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ABSTRACT

To quantify the predictability limit of a chaotic system, the authors recently developed a method using the
nonlinear local Lyapunov exponent (NLLE). The NLLE method provides a measure of local predictability
limit of chaotic systems and is intended to supplement existing predictability methods. To apply the NLLE in
studies of actual atmospheric predictability, an algorithm based on local dynamical analogs is devised to
enable the estimation of the NLLE and its derivatives using experimental or observational data. Two ex-
amples are given to illustrate the effectiveness of the algorithm, involving the Lorenz63 three-variable model
and the Lorenz96 forty-variable model; they reveal that the algorithm is applicable in estimating the NLLE of
a chaotic system from its experimental time series. On this basis, the NLLE method is used to investigate
temporal-spatial distributions of predictability limits of the daily geopotential height and wind fields. The
limit of atmospheric predictability varies widely with region, altitude, and season. The predictability limits of
the daily geopotential height and wind fields are generally less than 3 weeks in the troposphere, whereas they
are approximately 1 month in the lower stratosphere, revealing a potential predictability source for fore-
casting weather from the stratosphere. Further work is required to examine broader applications of the NLLE
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method in predictability studies of the atmosphere, ocean, and other systems.

1. Introduction

Since the pioneering works of Thompson (1957) and
Lorenz (1963, 1965), atmospheric predictability has
been extensively studied based on theoretical, numeri-
cal, and statistical models (e.g., Smagorinsky 1969; Leith
1983; Dalcher and Kalnay 1987; Fraedrich 1986, 1987,
Chou 1989; Farrell 1990; Simmons et al. 1995; Palmer
2006). It has long been recognized that the upper limit of
weather predictability for the synoptic and larger scales
is about 2 weeks. This limit gives a general estimate of
weather predictability for the global atmosphere. How-
ever, atmospheric predictability is largely a function of
location and season (Gonzalez-Miranda 1997, Kumar
et al. 2003; Reichler and Roads 2004; Chen et al. 2006),
implying that a three-dimensional structure of the pre-
dictability limit exists in the global atmosphere. Previous
studies have investigated the temporal-spatial distribution
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of atmospheric predictability (Rowell 1998; Kumar et al.
2003; Reichler and Roads 2004); however, these studies
were based primarily on numerical models, for which
model deficiencies would have strongly influenced the
estimates of atmospheric predictability. Moreover, these
studies provided only qualitative estimates of atmo-
spheric predictability, such as information on regions
with either higher or lower predictability but no further
details. As a result, a method for quantitatively estimat-
ing the temporal-spatial distribution of the atmospheric
predictability limit needs to be developed.

Observed atmospheric data contain almost all of the
real information regarding the day-to-day movement
and evolution of weather systems. Given that the precise
dynamical equations of atmospheric motion are explicitly
unknown, it is more appropriate to investigate quan-
titatively the temporal-spatial distribution of the at-
mospheric predictability limit based on observational
data. Estimation of atmospheric predictability based on
circulation analogs has been discussed in previous studies
(Lorenz 1969; Chen 1989; Toth 1991; Trevisan 1995).
Lorenz (1969) introduced the so-called natural analogs,
over a very large region such as the Northern Hemisphere
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or the globe, which is also termed the global analog or
spatial pattern analog, to study global predictability over
the globe, a hemisphere, or a large region. According to
Van den Dool (1994), it would take a library of order
10* yr to find good global analogs over a large region
such as the Northern Hemisphere (where the number of
spatial degrees of freedom is large). Obviously, it is im-
possible to find good global analogs with current libraries
of historical atmospheric data (order 10-100 yr). How-
ever, over a small enough area (where the number of
spatial degrees of freedom is relatively small), the prob-
ability of finding good analogs is great with only 10—
100 yr of data (Van den Dool 1994). Consequently, it
is possible to use current libraries of historical atmo-
spheric data to investigate the local predictability of the
atmosphere.

The main purpose of this study is to develop a new
method using local dynamical analogs for quantita-
tively investigating the temporal-spatial distribution
of the atmospheric predictability limit. The method is
based on the nonlinear local Lyapunov exponent (NLLE),
which is a nonlinear generalization to the existing local
or finite-time Lyapunov exponents. In the studies of
nonlinear dynamical systems, the Lyapunov exponents
measure the average exponential rates of divergence or
convergence of nearby orbits on a strange attractor and,
thus, quantify the average predictability properties of a
chaotic system (Oseledec 1968). By definition, if the
initial perturbation is of the size 6, and if the accepted
error tolerance A remains small, then the largest Lyapunov
exponent A provides an estimate of the average pre-
dictability time in a chaotic system: T, ~ 1/A__ In(A/5,)
(Eckmann and Ruelle 1985; Wolf et al. 1985; Lorenz
1996). Therefore, the largest Lyapunov exponent is an
important parameter that characterizes the average
predictability of chaotic systems. For systems whose
equations of motion are explicitly known, a standard
algorithm has been developed for computing the largest
Lyapunov exponent (Shimada and Nagashima 1979;
Benettin et al. 1980). There also exist several algorithms
for calculating the largest Lyapunov exponent from a
time series (Sano and Sawada 1985; Wolf et al. 1985).

Whereas the (global) Lyapunov exponent provides
a measure of the total predictability of a system, it is
sometimes useful to estimate the local predictability
around a point x; in phase space. Consequently, various
local or finite-time Lyapunov exponents have been
proposed (Yoden and Nomura 1993; Kazantsev 1999;
Ziehmann et al. 2000), for measuring the short-term
growth rate of small initial perturbations. However, the
existing local or finite-time Lyapunov exponents, which
are similar to the global Lyapunov exponents, are estab-
lished based on the assumption that the initial perturbations
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are sufficiently small that their evolution can be ap-
proximately governed by the tangent linear model (TLM)
of a nonlinear system, which essentially belongs to linear
error growth dynamics. Clearly, as long as an uncertainty
remains infinitesimal within the framework of the linear
error growth dynamics, it cannot pose a limit to pre-
dictability. Therefore, nonlinear patterns of behavior
in error growth should be considered when determining
the predictability limit (Lacarra and Talagrand 1988;
Mu 2000).

In view of the limitations of linear error growth dy-
namics, it is necessary to propose a new method based
on nonlinear error growth dynamics for quantifying
the predictability limit of chaotic systems. Recently, the
NLLE has been introduced to study the predictability of
an n-dimensional chaotic system or a single variable
within the system (Li et al. 2006; Ding and Li 2007;
Ding et al. 2008; Li and Ding 2009; Li and Wang 2008).
The NLLE measures the average growth rate of the ini-
tial errors of nonlinear dynamical models without line-
arizing the governing equations. The experimental results
from Ding and Li (2007) showed that, with the NLLE and
its derivatives, the limit of dynamic predictability in large
classes of chaotic systems can be efficiently and quan-
titatively determined. Compared to a linear method, the
NLLE is more suitable for determining quantitatively
the predictability limit of a chaotic system.

In addition to the NLLE, other definitions based on
the fully nonlinear equations, such as the finite-size
Lyapunov exponent (FSLE; Aurell et al. 1997; Boffetta
etal. 1998), have been introduced and applied to analyses
of geophysical flows, yielding interesting results. The
NLLE bears some similarities to the FSLE, as both
examine the nonlinear error growth of initial errors in
order to overcome the limitations of the Lyapunov ex-
ponents. However, some differences exist between the
NLLE and the FSLE. For example, the FSLE only de-
pends on initial errors, while the NLLE depends not only
on initial errors but also on the initial state and evolution
time. In addition, the NLLE can be used to measure the
averaged growth rate of the initial errors of the entire
n-dimensional system and a single variable of the system,
whereas the FSLE only measures the average growth rate
of the initial errors of the entire n-dimensional system.
Most importantly, the NLLE may effectively quantify the
predictability limit of chaotic systems, while the FSLE
focuses on examining the nonlinear error growth rate of
the initial errors.

With regard to the computation of the NLLE, if the
system’s equations of motion are explicitly known, such
as the Lorenz63 model (Lorenz 1963), we can directly
obtain the mean NLLE and the mean error growth via
numerical integration of the Lorenz63 model and its
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error evolution equations (Ding and Li 2007; Ding
et al. 2008). However, the atmosphere is an infinite-
dimensional system, in which there are many parameters
and physical processes that are explicitly unknown. For-
tunately, for many systems in reality, we can obtain
observational data, although the explicit governing equa-
tions of such data are probably unknown. Consequently, it
is possible to estimate the NLLE by making use of the
observational data available.

In previous studies, if experimental or observational
data were available for a single variable of a chaotic sys-
tem, the method of phase space reconstruction by time
delay embedding was then applied in reconstructing the
phase space of the system (Sano and Sawada 1985; Wolf
et al. 1985; Fraedrich 1986, 1987; Keppenne and Nicolis
1989). To achieve a good reconstruction, two parameters
we need to estimate are the time delay and the embedding
dimension. The standard method used to determine the
time delay is based on automutual information, and
that used to determine the embedding dimension is the
false nearest-neighbor method (Kantz and Schreiber
1997, 36-39). The Lyapunov exponents are estimated
by calculating the mean exponential divergence rate of
initially close trajectories in the reconstructed phase
space. However, in practical applications many diffi-
culties are encountered in the appropriate selection of
the embedding dimension (Holzfuss and Lauterborn 1989;
Li and Chou 1996). The estimation of Lyapunov expo-
nents is sensitive to the choice of the embedding di-
mension. How small or large the embedding dimension
is will lead to spurious Lyapunov exponents. These spu-
rious Lyapunov exponents can sometimes be larger than
the true Lyapunov exponents, which can then lead to
erroneous conclusions of the predictability time of
chaotic systems.

In addition, Wolf et al. (1985) pointed out that the
required number of experimental or observational data
points for accurate calculation of the Lyapunov expo-
nent ranges from 107 to 30%, where d is related to the
dimension of the attractor. For chaotic systems with
rather broad spectra, such as the atmosphere, whose at-
tractor is generally of a very large dimension, one must
have a very large amount of observational data for the
accurate calculation of the Lyapunov exponent. In fact,
current libraries of historical atmospheric data are not
large enough to provide such data. Consequently, studies
of atmospheric predictability using the method of phase
space reconstruction are severely limited by relatively
short observational records of the atmosphere, which is
similar to the situation using the method of global analogs.

In the present study, as an alternative to the global
analog, we introduce a local dynamical analog and de-
velop a new algorithm to search for the local dynamical
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analog from experimental or observational time series,
thereby enabling an estimate of the NLLE. For a small
local region or a single grid point, the small number of
spatial degrees of freedom makes it possible to find good
local dynamical analogs with current libraries of his-
torical atmospheric data (Van den Dool 1994). The new
algorithm allows us to search for local dynamical analogs
from observational time series, avoiding the phase space
reconstruction and thereby eliminating the possibility of
generating a spurious estimate of the NLLE. Based on
this new algorithm, the NLLE and its derivatives can be
used to investigate quantitatively the temporal-spatial
distribution of the atmospheric predictability limit. We,
therefore, term our entire approach the NLLE method.
It should be pointed out that Chen et al. (2006) de-
scribed a rather preliminary algorithm to estimate the
NLLE and applied the NLLE to study the predictability
of the 500-hPa geopotential height field. The NLLE
method in this paper presents a substantial improve-
ment and a wider application compared to the findings
of Chen et al. (2006). The remainder of this paper is
arranged as follows. Section 2 provides a brief description
of the NLLE and its application in estimating the pre-
dictability limit, and section 3 introduces the algorithm
based on local dynamical analogs to estimate the NLLE
using experimental or observational data. Section 4 tests
the validity of the algorithm by applying it to a simple
system, the Lorenz63 model (Lorenz 1963), and to a rel-
atively complex example, the Lorenz96 model (Lorenz
1996). Data requirements and noise problems of the
NLLE method are discussed in section 5. Section 6 shows
an application of the NLLE method in atmospheric
predictability, followed by a summary in section 7.

2. Nonlinear local Lyapunov exponent (NLLE)
and predictability limit

a. NLLE of an n-dimensional dynamical system

Consider a general n-dimensional nonlinear dynami-
cal system whose evolution is governed by

dx

o = F. 1)

where x =[x, (1), x,(t),...... , xn(t)]T is the state vector
at time ¢, the superscript T is the transpose, and F rep-
resents the dynamics. The evolution of a small error
6 =1[5,(0),8,(t),...... , 8n(t)]T, superimposed on a state
X, is governed by the nonlinear equations:

%5 = J(x)6 + G(x,8), )
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where J(x)d are the tangent linear terms and G(x, 8) are
the high-order nonlinear terms of the error 6. Because
of some difficulties in solving the nonlinear problem,
most previous studies (e.g., Lorenz 1965; Eckmann and
Ruelle 1985; Yoden and Nomura 1993; Kazantsev 1999;
Ziehmann et al. 2000) assumed that the initial perturba-
tions were sufficiently small that their evolutions could
be approximately governed by the following linear
equations:

d

ES = J(x)o. 3)
However, the evolution of the linear error is character-
ized by continuous exponential growth, which is not
applicable to a description of a process that involves the
initial exponential growth of sufficiently small errors to
finally achieve saturation (Ding and Li 2007). To de-
termine the limit of predictability, any proposed ‘‘local
Lyapunov exponent” should be defined with respect to
the nonlinear behavior of nonlinear dynamical systems.
Without a linear approximation, the solutions of Eq. (2)
can be obtained by numerically integrating it along the
reference solution x from ¢ = fy to ty + 7:

8, = n(x),8,7)d, 4)

where 8, =8(1, + 7),x, =x(¢,), 6, =6(t,), and n(x,,8,,7)
is the nonlinear propagator. The NLLE is then defined as

118l
/\(xo,ﬁo,r) :;lnH(S;H , (5)

where A(x,,8,,7) depends in general on the initial state
Xo in phase space, the initial error 6, and time 7. The
NLLE differs from existing local or finite-time Lyapunov
exponents defined based on linear error dynamics
(Kazantsev 1999; Yoden and Nomura 1993; Ziehmann
et al. 2000), which depend solely on the initial state xq
and time 7, not on the initial error 8y. In the double
limits of ||6,|| =0 and 7 — <, the NLLE converges to
the largest global Lyapunov exponent, A . (Ding and
Li 2007). The ensemble mean NLLE over the global
attractor of the dynamical system is given by

X(3y.7) = J A(%g,8.7) dx
Q

= </\(X0, 60» T)>N (N — ), (6)

where () represents the domain of the global attractor of
the system and ()5 denotes the ensemble average of
samples of sufficiently large size N (N — «). The mean
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relative growth of the initial error (RGIE) can be ob-
tained by

E(SO, T) = eXp[)_t(ﬁo, 7)7]. (7)

Using the saturation theorem from Ding and Li (2007),
we obtain

E@, 1) ——c (N—), (8)

where —— denotes the convergence in probability and
cis a constant that depends on the converged probability
distribution P of error growth. The constant ¢ can be
considered as the theoretical saturation level of F(SO, 7).
Once the error growth reaches the saturation level, al-
most all information on initial states is lost and the
prediction becomes meaningless. Using the theoretical
saturation level, the limit of the dynamical predictability
can be quantitatively determined (Li et al. 2006; Ding
and Li 2007). To estimate the maximum predictability
time of chaotic systems, the predictability limit is de-
fined as the time at which the error reaches 99% of its
saturation level.

b. NLLE of a single variable

The definition of the NLLE in Eq. (5) aims to quantify
the local error growth rate of the entire n-dimensional
system, and the magnitude of the error vector is mea-
sured by the norm of the n-dimensional vector. How-
ever, different variables of an n-dimensional chaotic
system may have different predictabilities. To quantify
the error growth rates and predictabilities of different
variables from an n-dimensional chaotic system, we
define the NLLE of a single variable, x;(i = 1,2, ... ... )
n), based on Eq. (5):

16,(ty+ 7)|

1
£,(x(,8,7) = - In |5,‘([o)| 9)

Similarly, the mean NLLE and RGIE of the variable x;
can be obtained as follows:

£(8,.7) = JQ £,(x0,8,.7) dx,

i

= (§,(x, 8, 7))y (N—), and (10)

$i(6(), 7) = exp[&,(8,, 7)7]. (11)
From Egs. (9)-(11), we obtain
N
— B 1 \51.].([0-1- 7)]
qu(SO, T) = eXp|:N§1, lnw} . (12)
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For a given initial error §,(fy) of variable x;, we have

N 1N
$i(50,7)=[]1=]1|5ij(t0+7)|] / 8,1 . (13)

For chaotic systems, as 7 — %, |8, (¢, + 7)|, [8,,(t, + 7)|,
...... ,|8,5(t, + 7)| are independent and identically dis-
tributed, following

) = {p(")’ 0=r=a

14
0, x<0 or (14)

xX>a,

where a is a positive constant [because the chaotic at-
tractor is confined to a finite region, a is thought to be the
maximum value of §,(ty + 7)], and p(x) is a continuous
function defined over an enclosed interval [0, a]. Using
the Khinchine’s weak law of large numbers (Rose and
Smith 2002), as 7 — o, in the same way as in Eq. (8), we
can prove

(8, 7)—L—c, (N—>w), (15)
where ¢; can be considered the theoretical saturation
level of @. [6(%,),7]. Using the theoretical saturation
level ¢;, the limit of the dynamical predictability of var-
iable x; can be quantitatively determined. Li and Ding
(2009) showed that the predictability limits of different
variables in multidimensional chaotic systems are in-
terrelated with each other. The ratio of the predictability
limit of a single variable to that of the entire system
remains almost constant, regardless of the magnitude of
initial errors.

3. An algorithm based on local dynamical analogs
to estimate the NLLE from experimental or
observational data

As stated above, the NLLE can be determined by Eqgs.
(5) or (9) if the governing equations of an n-dimensional
dynamical system are explicitly known. However, if we
only obtain the experimental data of a single variable x
of an n-dimensional chaotic system, or observe the at-
mospheric data of variable x at one point of n spatial
grid points [e.g., the time series of x is given by
{x(#),i=0,1,2, ...... ,m — 1} where m represents the
length of the time series], the question of how to estimate
the NLLE of variable x from the time series is of practical
significance. To estimate the NLLE, it is necessary to
examine the growth rate of the distance between two
initially close states in phase space. Thus, the first step
is to seek analogous initial states from the time series.
Because only the time series of variable x is available
(information is lacking regarding other variables of the
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n-dimensional system), it is necessary to develop a tech-
nique that simply relies on variable x to find local anal-
ogous states in the n-dimensional phase space. On the one
hand, variable x has a small initial error between two local
analogous states; on the other hand, other variables have
as small initial errors as possible.

For chaotic systems, the evolutions of two states are
sure to be analogous over a short time if they are anal-
ogous at the initial time (Lorenz 1969; Wolf et al. 1985).
Conversely, it is highly likely that two states are analo-
gous at the initial time if their evolutions in phase space
are analogous during the initial stage (i.e., over a short
time). By simply relying on the variable x, we can take
advantage of this property of chaotic systems to search
for local analogous states and to exclude, as much as
possible, local nonanalogous states. Without recon-
struction of the phase space, the initial information and
evolutionary information on the reference trajectory of
variable x are used to search for local analogs in space
phase. In this way, it is almost impossible to find true
analogs in full space or over a very large region. How-
ever, it is possible to find good local analogs at a point or
over a relatively small region, thereby enabling us to
quantitatively estimate the limit of local predictability.
This analog is referred to as a “‘local dynamical analog.”
An algorithm that allows an estimation of the mean
NLLE from the experimental or observational time se-
ries of variable x is given as follows.

a. Step 1

Taking x(#y) as the reference point at time ¢, we first
seek the local dynamical analog x(z;) of the reference
point from the dataset. Two distances (i.e., the initial
distance between two points and the evolutionary dis-
tance between their trajectories within a short initial
period) are used to measure the degree of similarity
between the points. All points x(¢)(|t; — to| > tp, where
tp is the time taken for autocorrelations of the variable x
to drop to around 0.0, ensuring that a good analog pair is
not merely due to persistence) in the dataset form a set
S. The initial distance d; between the points x(#y) and
x(t;) is given by

d; = |x(ty) — x(1))l- (16)
We assume that the evolutions of the two points are
analogous over a very short time 7, if they are analogous
at the initial time. The choice of the short time interval 7
depends on the persistence of the variable x; if the per-
sistence is low, the time over which two initially close
points remain analogous is relatively short. The time
taken for autocorrelations of variable x to drop to 0.9
can be regarded as a rough estimate of the short time
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FIG. 1. A schematic representation of the evolution procedure used to estimate the NLLE
from experimental or observational data. The evolution trajectory of a local dynamical analog

of the reference point at time #; (i =0, 1,2, ..

.)is denoted as an analogous trajectory (i + 1). The

average of the growth rates of the distances between the reference trajectory and all analogous

trajectories is used to estimate the NLLE.

interval 7. A high value (0.9) of autocorrelation is chosen
to ensure a short time interval (the results were found to
be insensitive to the selected value). Within the short
interval 7 [T = KA, where A is the sampling interval of
the time series (i.e., A =, — t;_1) and K is the ratio of 7 to
A], the evolutionary distance d, between the two points
x(tp) and x(t)) is given by

d, = K+1 Z[xa) x(t,, )P

(17)
Here, d; is the amount of the initial separation between
the two points x(fy) and x(¢;), while d, is the evolutionary
distance between their trajectories over a short initial
period. The total distance d,, considering not only the
initial distance but also the evolutionary distance, is
found by adding d; and d.:

d=d +d, (18)
If d, is very small, it is highly likely that the points x(#)
and x(t;) are locally dynamically analogous at the initial
time.

Of course, this approach is unlikely to exclude the
possibility that only the variable x and its most relevant
variables remain close, whereas other variables evolve
very differently over time, especially for high-dimensional
dynamical systems. Therefore, the analogs based on the
variable x are only local analogs and that they cannot
simply be considered to be global analogs. The constraint
of the total distance d,, which contains both initial in-
formation and evolutionary information over a short in-
terval, allows us to exclude a large portion of all points

with large initial distances, thereby helping us to find
a truly local analog of the reference point.

For every point x(¢) in the set S, the value of d, can be
determined. The nearest-neighbor (local dynamical an-
alog) x(t;) of the reference point x(f) can be chosen
from the set S only if d, is the minimum. Then, the initial
distance between x(fy) and x(#;) is denoted as follows:

L(ty) = x(ty) — x(1)]- (19)

b. Step 2

Attimet, =1, +i X A(i=1,2,3, , M, where M is
the total number of time steps), x(,) will have evolved
to x(#;) along the reference trajectory, and x(z;) will
have evolved into x(#;;) along the analogous trajectory
(Fig. 1). The initial difference L(,) will have become

L(z) = |x(z)

= x(tp ) (20)

The growth rate of the initial error during the time in-

terval (f; — to) is

1 L(t)
L(to)

&(1)= (21)

With i gradually increasing, we can obtain the variation
of &(¢;) as a function of the evolution time ¢; (i = 1, 2,

c. Step 3

Taking x(1) as the reference state and repeating steps
1 and 2 above (see Fig. 1), we obtain the variation of
&,(t,) as a function of the evolution time ¢;.
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d. Step 4

The above procedure is repeated until the trajectory
reaches the last reference point x(z, _,,_,). By taking
the average of the error growth rates at all reference

points, {x(,),x(t;), ...... ,x(t,_,_1)}, we obtain the
mean NLLE:

. N
E) =g a0) (=123, (@)

where N = m — M is the total number of reference
points on the reference trajectory.

e. Step 5

From Egs. (21) and (22), we obtain the approximation
of the RGIE:

(1) = expl&(t)(t; — 1)), (=1,2,3, ... ... ,M).

By investigating the evolution of 5(11.) with increasing ¢;,
we can estimate the mean predictability limit of the
variable x.

For systems whose equations of motion are explicitly
known, such as the Lorenz63 model, their error growth
equations can also be explicitly known. By analyzing the
probability distribution of the initial distances between
the reference points and their local dynamical analogs
using the above algorithm, we find that the initial dis-
tances of the variable x follow a lognormal distribution,
becoming a Gaussian distribution after a logarithmic
transform. Similar results have been found by Gutiérrez
et al. (2008) and Primo et al. (2008), who pointed out
that the spatial finite perturbations in spatiotemporal
chaos follow a lognormal distribution and that they be-
come Gaussian after a logarithmic transform.

By analyzing the Gaussian distribution, we can obtain
the initial distance of the variable x with the maximum
probability. In step 1 of the algorithm, suppose that the
local dynamical analog of the reference point x(¢y) can
be found at time t;, the initial distances of variables
other than x in a multivariable system could then be
obtained at the same time by calculating the difference
between the values at times fy and f,. The initial dis-
tances of other variables are also found to follow a log-
normal distribution. Hence, the initial distances of other
variables with the maximum probability can also be
determined. Taking the initial distances of all variables
with the maximum probability as the initial perturba-
tions, error growth equations of chaotic systems can
yield theoretical results of the NLLE. Finally, we can
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test the validity of the above algorithm by comparing the
experimental results obtained using the algorithm with
the theoretical results. If the two results are close and the
initial perturbation of variable x with the maximum
probability is relatively small, the experimental results
obtained using the algorithm are considered meaningful.

4. Case studies
a. The Lorenz63 model
The Lorenz63 model is
dX/dt=—ocX + oY

dyldt=rX — Y — XZ,
dzZldt=XY — bZ

(24)

where o = 10, r = 28, and b = %3, for which the well-
known butterfly attractor exists (Lorenz 1963). The time
series of variables X, Y, and Z of the Lorenz system can
be obtained by using the fourth-order Runge-Kutta
method with a time step of A = 0.01. The time series
includes 8 X 10* points. The error growth equations of
the Lorenz63 model are

dsX/dt = —a8X + a8Y
dsYldt = (r — Z)8X — 8Y — (X +6X)8Z,
dsZ/dt = (Y +8Y)8X + X8Y — bdZ

(25)

where 86X, 8Y, and 6Z are the errors superposed on
variables X, Y, and Z, respectively.

Figure 2 shows the probability distribution of the
initial distances between the reference points and their
local dynamical analogs of variable X. The probability
distribution of the initial distances for variables Y and Z
can be obtained after the local dynamical analogs of
variable X have been found. The initial distances of
variables X, Y, and Z with the maximum probability are
e *2, ¢70 and e >?, respectively. Although the local
dynamical analogs of reference points are searched for
based on the variable X, the initial distances of variables
Y and Z are relatively small compared with their in-
dividual standard deviations, indicating that for a very
large proportion of reference points their true analogs
could be found. By taking e *?, ¢ 3 and e~ as initial
perturbations of variables X, Y, and Z, respectively, the
mean error growth of the variable X is obtained via the
error growth equations of the Lorenz63 model.

Figure 3a shows two curves that correspond to the
mean error growth of the variable X based on the al-
gorithm and the theoretical result from the error growth
equations of the Lorenz63 model. The root-mean-
square distance (RMSD) between the two curves is
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FI1G. 2. Probability distributions of the initial distance d; of var-
iables X (red line), Y (green line), and Z (blue line) from the
Lorenz63 model when the local dynamical analogs of reference
points are searched for based on the variable X.

where f; and g; are the values of the two curves at each
time step, and M is the total number of time steps. The
RMSD between the two curves in Fig. 3a is very small
(0.11), indicating that the experimental and theoretical
results are largely consistent.

Similarly, the mean error growth curves of variables
Y and Z based on the algorithm show little difference
with the curves of the error growth equations, yielding
RMSD values of 0.17 and 0.21, respectively (Figs. 3b and
3c). The results demonstrate that the mean error growth
rates of variables X, Y, and Z, as estimated by using the
algorithm, closely correspond to the theoretical values
derived from the error growth equations. These results
verify the validity of the algorithm in determining the
mean error growth from the experimental data of a sin-
gle variable of the Lorenz63 model.

b. The Lorenz96 model

The Lorenz63 model is a relatively simple chaotic
system with variables that evolve in a low-dimensional
attractor. Is the algorithm applicable to more complex,
high-dimensional chaotic systems? To answer this
question, we chose the Lorenz96 model as an example.
The Lorenz96 model (Lorenz 1996) is a 40-variable
model that has been used by various authors as a low-
order proxy for atmospheric prediction and assimilation
studies (e.g., Lorenz and Emanuel 1998; Anderson 2001;
Annan 2004). The model has 40 state variables,
X, X,, ..., X,,, which are governed by the equation

dXjdt=(X,,, — X, )X,_, — X, + F, (26)

MONTHLY WEATHER REVIEW

VOLUME 139

(a)

o
o

10 15 20 25 30

(b)

(c)

64
5
44
34

2 4

0 5 10 15 20 25 30
t

FIG. 3. (a) Mean error growth of variable X of the Lorenz63
model as estimated by the algorithm outlined in section 3 (red line)
and the theoretical growth (blue line) from the error growth
equations of the Lorenz63 model, in which e 42 30 —22

e 77,ande are
taken as initial perturbations of variables X, Y, and Z, respectively.
(b) Asin (a), but for variable Y of the Lorenz63 model. (c) Asin (a),
but for variable Z of the Lorenz63 model. In (a)—(c), ® denotes the
mean error of variables X, Y, and Z, respectively; ¢ denotes time.

where the index 1 = i =< 40 is arranged cyclically and
F is a fixed forcing. The variables X; (1 =i = 40) of
the Lorenz96 model may be thought of as values of
some atmospheric quantity in 40 sectors of a latitude
circle. The model is integrated with the fourth-order
Runge-Kutta method with a time step of A = 0.05.
When F = 8.0, the model displays sensitive dependence
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FIG. 4. Probability distributions of the initial distance d; of var-
iables X, X5, and X (light blue lines, which overlap with each
other and therefore cannot be distinguished), X3 (red line), X3o
(green line), X, (blue line), X35 (vellow line),and X; i = 5, ...... ,37;
black lines) of the Lorenz96 model when the local dynamical analogs
of reference points are searched for based on the variable Xj.

on the initial conditions. We can obtain the time series
of variables X; (1 = i = 40) of the Lorenz96 model with
the length of m = 10°. The error growth equation of the
Lorenz96 model is as follows:

dSX Jdt=(8X,,, — 8X, )X, ,
+ (X, 80X, — X,_,— 86X, ,)0X, , —8X

i+1 i’

27)

where 6X; is the error on variables X; (1 = i = 40). To
enhance the information from other variables, the
nearest variables X;_; and X, of variable X; are con-
sidered when the neighboring points of X; are searched
for using the algorithm. That is, the distance between the
reference point X;(fy) and the other point X(t) is re-
placed by the one between the points [X;—1(to), Xi(t),
Xit1(to)] and [X;—1(t), Xi(t)), X;—1(z;)] as follows:

1 i j /
d= \/5 [(XP =X+ (X = X1)% + (X — X,
(28)

where  XP'=X(4), XLy =X, 4(4), Xy =X,,,(4),
X/ =X(1), X, =X,_,(t), and X}, =X, ,(t). The
variable X; represents the value of some atmospheric
quantity in only one sector of a latitude circle. The
variables X;_; and X, are considered when the local
dynamical analogs of X; are searched for, which is equiv-
alent to a search for the local dynamical analogs of X; in
a larger region.

Figure 4 shows the probability distribution of the initial
distances of variables X; (1 = i = 40) of the Lorenz96
model when the neighbors of the reference points are
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FIG. 5. Asin Fig. 3, but for variable X; of the Lorenz96 model. In
the error growth equations of the Lorenz96 model, e 20 00 04
and ¢”* are taken as initial perturbations of variables X; (and the

same for X, and Xy), X390, X3, and Xzg, respectively; other vari-
ables X; (4 = i = 37) have initial perturbations of e'-*.

searched for based on the variable X; (the nearest vari-
ables X, and X, of X are also included, but are denoted
as X for simplicity). It is clear that only X has relatively
small initial distances between the reference points and
their local dynamical analogs and that the initial distances
become larger as the other variables depart further from
Xi. The initial distances of variables X, (i = 1,3,38,39)
with the maximum probability are e 20 %4 04 and &0,
respectively, while other variables X; (4 = i = 37) have
the same initial distance of e This result indicates that
only X7 and its most relevant variables (including X3, X3g,
and X39) have small initial perturbations, while the initial
perturbations of other variables (including X;,4 = i = 37)
are relatively large. Certainly, the analogs based on X;
cannot be called global analogs, and they are only local
analogs. According to traditional views of global analogs,
these analogs cannot be considered to be good analogs.
However, although the mean error of X; shows a rapid
increase due to the error propagation of other variables,
the small initial error of X reaches saturation after some
time, suggesting that there still exists a certain pre-
dictability limit for this variable (Fig. 5).

If the predictability limit is defined as the time at
which the error reaches 99% of its saturation level, the
predictability limit of X} is determined to be about 30
time steps. Taking the initial distances with the maxi-
mum probability as initial perturbations, the mean error
growth of X, as calculated by the algorithm, is largely
consistent with that derived from the error growth
equations, with an RMSD of 0.12 for the two curves in
Fig. 5. In addition to X7, the same algorithm is applied to
other variables, revealing that the mean error growth of
other variables is similar to that of X;. The predictability
limit of other variables is also close to 30 time steps.
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Further analysis shows that the predictability limit of
each variable, as obtained from the error growth equa-
tions of the Lorenz96 model with an initial error of 1.5
on every variable, is about 30 time steps (not shown).
Therefore, we infer that the predictability limit of each
variable, as deduced using the algorithm, is equivalent to
that obtained from the error growth equations with an
initial error of 1.5. The standard deviation of each var-
iable of the Lorenz96 model is about 3.0, meaning that
the initial error of 1.5 is approximately half of the stan-
dard deviation. The results show that the predictability
limit of 30 time steps is meaningful, which could be
obtained by using only a small initial error based on the
error growth equations of the Lorenz96 model.

5. Data requirements and noise
a. Data requirements

Let us now consider an important question on the
quantity of experimental or observational data required
for an accurate estimation of the predictability limit.
The time series of a certain variable should be long
enough for identification of truly local analogs at every
reference point. The amount of data required to esti-
mate the mean error growth depends on the information
of the attractor’s probability distribution. With an in-
creasing number of data points, the data will be in-
dependent and identically distributed, which follows the
attractor’s probability distribution (the number of data
points N — ). If the probability distribution of finite
data points (denoted as Q) is close to the attractor’s
probability distribution (denoted as P), data points can
be thought to fill out the structure of the attractor,
thereby providing truly local analogous points. There-
fore, we can estimate how many points are required by
determining if the difference between two probability
distributions P and Q remains small. The difference
between P and Q is measured by the Kullback-Leibler
(KL) divergence (Kullback and Leibler 1951). For P and
Q of a discrete random variable, the KL divergence
Dy, (P|| Q) of Q from P is defined as

P(i
Dy (PI0)= X Py loggy ).

Taking the Lorenz63 model as an example, the
probability distribution of variable X obtained by using
the number of data points N = 1 X 10° (from the fourth-
order Runge-Kutta method with a time step of A = 0.01)
is considered as an approximation of the Lorenz at-
tractor’s probability distribution (denoted as P). The
probability distribution Q changes with a gradual de-
crease in the number of data points, as does the KL

(29)
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F1G. 6. KL divergence between the probability distributions P
and Q of variables X (red line), Y (green line), and Z (blue line) of
the Lorenz63 model. Here, P is obtained by using N = 1 X 10° data
points. The number of data points used to obtain Q varies from 9 X
10° to 4 X 10°. The horizontal dashed line shows the KL divergence
of 0.01.

divergence Q from P, being close to zero for the number
of data points N =5 X 10* —9 X 10° (Fig. 6). When the
number of data points has decreased to N =1 X 10*, the
KL divergence becomes pronounced, indicating that
the estimated probability distribution Q of variable X be-
gins to diverge from P. If the KL divergence is less than
0.01 (99%), the number of data points is considered to
be the required number of data points. Based on the
changes in the KL divergence with different numbers of
data points, the minimum number of data points re-
quired for estimating the predictability limit of variable
X is about 2 X 10%.

Figure 7 shows the estimated predictability limit of
variable X as a function of the number of data points.
The limit shows a gradual decrease with decreasing
number of data points when the number of data points is
greater than 2 X 10*. However, when the number of data
points is less than 2 X 10%, the limit shows a rapid de-
crease with a decreasing number of data points. The
estimated predictability limit has an error of approxi-
mately 17% when using 2 X 10* data points. For vari-
ables Y and Z of the Lorenz63 model, the minimum
number of required data points is about 2 X 10* in both
cases, similar to that for the variable X (Fig. 6).

In a real situation, the number of experimental or
observational data points is finite. The probability dis-
tribution Q of experimental or observational data is
easily obtained. However, it is impossible to determine
the attractor’s probability distribution P in advance.
Therefore, it is impossible to determine the required
number of data points by investigating the KL di-
vergence between P and Q. If the probability distribu-
tion of experimental or observational data is assumed to
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FIG. 7. Estimated predictability limit of variable X of the Lorenz63
model as a function of the number of data points. Because of large
fluctuations in error growth when a small number of data points is
used, the predictability limit here is defined as the time at which the
error reaches 90% of its saturation level, in order to reduce the ef-
fects of sampling fluctuations. The dashed line represents the pre-
dictability limit obtained using 2 X 10* data points.

be the attractor’s probability distribution P, then Q is
the probability distribution of a certain portion of the
experimental or observational data. Figure 8 shows that
when the number of experimental data points of variable
X in the Lorenz63 model is large, the KL divergence
between P and Q increases slowly at first with a de-
creasing number of data points. In contrast, when the
number of experimental data points is very small, the
KL divergence between P and Q shows a rapid increase
at first with a decreasing number of data points. Our
experimental results indicate that the data would be
sufficient to identify good local analogs, if the KL di-
vergence is still less than 0.01 when the number of data
points is reduced to 20% of the total number of experi-
mental data points. If the KL divergence does not satisfy
this criterion, the estimate of the predictability limit, based
on experimental data, would possibly include a large error.
In Fig. 8, when the number of data pointsis 5 X 10*, the
KL divergence is still less than 0.01 when the number of
data points is reduced to 1 X 10*. However, when the
number of data points is 1 X 10%, the KL divergence is
far greater than 0.01 when the number of data points is
reduced to 2 X 10°. According to the criterion, 5 X 10*
(1 X 10*) data points of variable X; in the Lorenz96
model are sufficient (insufficient) to identify good local
analogs. For the Lorenz96 model, 1 X 10° data points are
shown to be enough to identify good local analogs, thereby
producing a relatively small initial error in X; (Fig. 5).

b. Noise

Experimental measurements inevitably contain noise
that leads to problems when searching for truly local
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F1G. 8. KL divergence between the probability distributions P
and Q of variable X of the Lorenz63 model. The solid line with dots
shows the KL divergence, where P is obtained using N =5 X 10*
data points, and the number of data points used to obtain Q varies
from 4 X 10*to 2 X 10. The dashed line with open circles shows the
KL divergence, where P is obtained using N = 1 X 10* data points,
and the number of data points used to obtain Q varies from 9 X 10°
to 2 X 10°. The horizontal dashed lines show the KL divergence of
0.01.

analogs of reference points. Some false analogs are in-
evitably found in noise-contaminated experimental or
observational data, thereby reducing the estimated
predictability limit. Figure 9 shows that when the am-
plitude of the Gaussian noise exceeds 0.001 o (where o is
the standard deviation of variable X of the Lorenz63
model), the predictability limit of variable X is greatly
reduced. One approach to reducing the effects of noise is

predictability limit

0 T T T T T T T T T
0.0001 0.0005 0.001 0.005 0.01 0.05 04 0.2 0.3 0.4 0.5

the magnitude of noise (xo)

FIG. 9. The estimated predictability limit of variable X of the
Lorenz63 model varies with the amplitude of the Gaussian noise.
The average value of the Gaussian noise is set to 0 and its standard
deviation varies from 0.0001o to 0.50, where o is the standard
deviation of variable X of the Lorenz63 model. Gaussian noise is
added to the entire time series of variable X. The predictability
limit here is defined in the same way as in Fig. 7, as the time at
which the error reaches 90% of its saturation level. The time series
of variable X includes 8 X 10* data points.
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FIG. 10. Estimated error growth of variable X of the Lorenz63
model from a time series with Gaussian noise (green line). The
average value of the Gaussian noise is set to 0 and its standard
deviation is 0.01c, where o is the standard deviation of variable X
of the Lorenz63 model. Gaussian noise is added to the entire time
series of variable X (total of 8 X 10* data points). The red line
shows the estimated error growth of variable X, as derived from
a nine-point running mean of the time series with Gaussian noise.
The blue line indicates the estimated error growth of variable X
from a noise-free time series. Here, ® denotes the mean error of
the variable X and ¢ denotes time.

to apply a low-pass filter to the experimental or ob-
servational data before estimating the predictability.
Filtering can be expected to eliminate noise, but the
predictability of the experimental or observational
datais not expected to be affected by intensive filtering.
Therefore, an appropriate low-pass filtering should
be considered to overcome problems associated with
noise. A demonstration of filtering (nine-point running
mean) for variable X of the Lorenz63 model is shown
in Fig. 10. The mean error growth curve obtained from
the filtered data is closer (with a smaller RMSD) to the
noise-free result than the one obtained from the un-
filtered data, indicating that filtering can reduce the
effects of noise and improve the estimation of mean
error growth. However, if the noise is of sufficiently
large amplitude (like 0.1c), filtering would fail to re-
duce or eliminate the effects of noise (not shown).

6. Applications of the NLLE method in
atmospheric predictability

The NLLE method can be further applied to studies
of atmospheric predictability since the global attractor
exists in the atmosphere (Li and Chou 1997, 2003; Li and
Wang 2008). As is well known, atmospheric observa-
tional data show a pronounced annual cycle because of
the seasonal march of the sun. Therefore, two points at
similar times in different years may have similar dy-
namical features, probably indicating that the points are
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F1G. 11. KL divergence between the probability distributions P
and Q of the winter 500-hPa geopotential height at the grid point
40°N, 160°W. Here, P was obtained using 4 X 90 X 60 = 21 600 data
points. The number of data points used to obtain Q varies from 2 X
10*to 1 X 10°. The horizontal dashed line shows the KL divergence
of 0.01.

close to each other in phase space. We may search for
the local dynamical analog of the reference point from
all points occurring in a similar “‘season’ in different
years (e.g., £45 days from the reference days for daily
observational data). This feature of the atmospheric
observation data will help us to find truly analogous
points.

Here, we analyze the four-times-daily National Cen-
ters for Environmental Prediction—National Center for
Atmospheric Research (NCEP-NCAR) reanalysis data
(1948-2007). The NCEP-NCAR reanalysis grid has
a global spatial coverage of 2.5° latitude X 2.5° longi-
tude, or 144 X 73 grid points. Daily data are obtained as
a 1-day moving average of the 4-times-daily data. The
time series of every variable at one grid point includes
4 X 365 X 60 = 87 600 reference points. Since we use
only data of =45 days in different years from the ref-
erence days to search for the analogs, the number of data
points available for the analogs is 4 X 91 X 59 = 21 476.
In Fig. 11, only data from one season (about 4 X 90 X
60 = 21 600 data points) is used to examine the KL di-
vergence. The results show that the KL divergence of
the winter 500-hPa geopotential height at the grid point
40°N, 160°W is slightly greater than 0.01 when the
number of data points is reduced to 20% of the total
number of data points. Similar results are obtained at
other grid points, indicating that the reanalysis data are
barely enough for finding good analogs of local atmo-
spheric patterns.

A single atmospheric variable at a given grid point is
denoted as X;; (1 = i = 144,2 = j = 72), excluding the
North and South Poles. As with the Lorenz96 model, the
information of the nearest four grid points around the grid



OCTOBER 2011

LI AND DING

80N - BON
40N - 40N
EQ{ L EQ
408 - 40S
80S -80S

0 4 6 B 1012 14
T

FIG. 12. (left) Spatial distribution of the annual mean predictability limit (in days) of the daily
500-hPa geopotential height field and (right) its zonal mean profile. Here, Tp denotes the
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predictability limit.

point (i, j) is considered when searching for the local
analogs of )X;;. The distance in Eq. (28) at the grid point
(i,7) is replaced by the one between the reference values
and the neighboring values at five neighboring grid
points: (i, ), (i — 1,7), (i + 1,)), (i,j —1),and (i,j + 1).
The results indicate that, although the local mean error
of the atmospheric variables shows a rapid increase due
to the propagation of large initial analogous differences
from upstream regions (not shown), good local dynamical
analogs ensure the existence of a certain local pre-
dictability limit. This limit, caused by local initial analo-
gous errors and error propagation from upstream regions,
is useful when investigating the spatial distribution of
atmospheric predictability.

Figure 12 shows the spatial distribution of the pre-
dictability limit of the daily 500-hPa geopotential height
field. The annual mean predictability limit appears to
have a zonal distribution, with a maximum of 10-14 days
over the tropics and Antarctic, followed by 8-11 days
over the Arctic, 6-11 days over the mid- to high lati-
tudes in the Northern Hemisphere, and a lowest limit of
4-6 days at the Southern Hemisphere midlatitudes. In
the midlatitudes, baroclinicity is the dominant instability
responsible for the growth of small errors at the synoptic
(weather) scales. The existence of storm tracks over the
midlatitudes explains the minimum predictability limit in
these regions, about 5 days at 35°-65°S and 6-8 days at
35°-50°N. However, the situation is somewhat different
over the tropics. Baroclinic instability is generally negli-
gible in the tropics, where barotropic and convective in-
stabilities and their interactions are dominant. Reynolds
et al. (1994) found that the growth rate of the internal
error in the midlatitudes is much greater than that in
the tropics, and that model deficiencies are the main
error sources in the tropics. Today, the prediction skill

of state-of-the-art operational forecast models is close
to the predictability limit in the midlatitudes, but far
below the predictability limit in the tropics (Bengtsson
etal.2005). The results of the present study suggest that
in the tropics a significant increase in prediction skill
may be obtained through model improvements, whereas
the potential for an increase in prediction skill is much
lower in the midlatitudes.

The predictability limit of the daily 500-hPa geo-
potential height field varies with the season (Fig. 13). In
the boreal spring, the predictability limit in the Southern
Hemisphere is much higher than that in the Northern
Hemisphere; the maximum predictability limit is ob-
served over the Southern Hemisphere subtropics and
the Antarctic region. Very low predictability limits in
the Southern Hemisphere are seen only in small areas,
whereas large areas in the Northern Hemisphere have
low limits. In contrast, the predictability limit in the
boreal autumn is much higher in the Northern Hemi-
sphere than in the Southern Hemisphere. Over most re-
gions in the Northern Hemisphere, the predictability limit
exceeds 9 days, and the maximum predictability limit of
about 2 weeks is located mainly in the mid- to low lati-
tudes of the Northern Hemisphere. As we know, weather
patterns in autumn are relatively stable, while weather
conditions fluctuate strongly in spring, which may explain
the higher predictability limit in the autumn hemisphere
than in the spring hemisphere.

In the boreal summer, the predictability limit over the
tropics and polar regions is relatively high, whereas it is
very low in the Northern Hemisphere subtropics and
Southern Hemisphere midlatitudes. Compared with the
boreal summer, in the boreal winter the predictability
limit is high in the Antarctic and over the tropical
Indian, North Pacific, and North Atlantic Oceans. The
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FIG. 13. Spatial distributions of (left) the seasonal mean predictability limit (in days) of
the daily 500-hPa geopotential height field and (right) their zonal mean profiles: (a) spring
(March-May), (b) summer (June-August), (c) autumn (September-November), and
(d) winter (December—February). Here, T denotes the predictability limit.
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FIG. 14. As in Fig. 12, but for the daily 850-hPa vector wind field. The error of the vector wind

field is measured by the absolute error of

existence of good long-range predictability over these
regions during the boreal winter was reported by
Reichler and Roads (2004), who attributed this finding
to the major modes of low-frequency atmospheric vari-
ability, including the Southern Hemisphere annular
mode (SAM) or Antarctic Oscillation (AAO; Gong and
Wang 1999; Thompson and Wallace 2000; Nan and Li
2003), the Pacific-North America teleconnection (PNA;
Wallace and Gutzler 1981), and the North Atlantic Os-
cillation (NAO; Barnston and Livezey 1987; Li and Wang
2003). In addition, there are two belts of low pre-
dictability limits located over the midlatitudes of Eurasia
and North America in winter, which are largely consis-
tent with the locations of Northern Hemisphere winter
storm tracks.

Simmons and Hollingsworth (2002) showed that the
European Centre for Medium-Range Weather Fore-
casts (ECMWF) forecast errors at 500-hPa height over
the extratropical Northern Hemisphere during winter
2001 did not reach saturation until 10 days later. How-
ever, the predictability limit over most regions of the
extratropical Northern Hemisphere in winter is less than
10 days, according to our result shown in Fig. 13d. Our
result probably reflects the fact that the propagation
of large initial analogous differences in the upstream
regions has a significant influence on error growth in
downstream regions. On the other hand, atmospheric
predictability depends on spatial scales; a large spatial
scale generally corresponds to a higher degree of pre-
dictability. Therefore, the error averaged over a large
region of the extratropical Northern Hemisphere may
show slower growth than the error for small regions in
the extratropical Northern Hemisphere.

The variability of the wind field is large in the tropics,
making it suitable for assessing the predictability limit in
the tropics (Bengtsson and Hodges 2006). Figure 14

(Au)* + (Av)’.

shows the spatial distribution of the predictability limit
of the daily 850-hPa vector wind field. Compared with
the daily 500-hPa geopotential height field, the daily
850-hPa vector wind field has a lower predictability limit
over most of the globe. The limit is less than 6 days
worldwide, except in the tropics, North Pacific, and North
Atlantic, where it is beyond 7 days. The predictability
limit of the daily 850-hPa vector wind field is the lowest in
the mid- to high latitudes of Eurasia, North America, and
the Southern Hemisphere, similar to the daily 500-hPa
geopotential height field.

The predictability limit of the daily 850-hPa vector
wind field also changes with the season (Fig. 15). In the
boreal spring, the weather in the Northern Hemisphere
is variable and the predictability limit is very low,
whereas weather systems in the Southern Hemisphere
are stable, resulting in a high predictability limit. The
situation in the boreal autumn is the reverse of that
in the boreal spring: except off the east coast of Asia
and in the northern part of North America, where the
predictability limit is below 5 days, the predictability
limit throughout the Northern Hemisphere is relatively
high, reaching 2 weeks in the North Pacific and North
Atlantic. During the boreal autumn, the predictability
limit shows large spatial variability in the region from
East Asia to the central and eastern Pacific, possibly
related to the East Asian trough, which is highly vari-
able, and the subtropical Pacific anticyclone, which is
stable. A similar case is found when considering the
North American trough over North America and the
Azores high over the North Atlantic Ocean. These
results may reflect the large differences in local pre-
dictability. In fact, local predictability depends on local
weather regimes, which have different intrinsic sta-
bilities that determine the spatial variability of local
predictability.



3280

(a) Spring

MONTHLY WEATHER REVIEW

80N - 80N
40N - 40N
EQ -EQ
40S - 40S
80S ) l8os
0 60E 120E 180 120w 60W 0 0 4 8 12
(b) Summer
- BON
- 40N
-EQ
- 40S
-80S
60E 120E 180 120w 60W 4
(c) Autumn
80N1 = - 80N
40N - 40N
EQ -EQ
40S - 40S
80S ___ l8os
0 60E 120E 180 120w 60W 0 2 6 10 14
(d) Winter
80N - 80N
40N - 40N
EQ -EQ
40S - 40S
80S _ 2 l8os
0 60E 120E 180 120w 60W 0 0 4 8 12
4 5 [] 7 8 9 10 11 12 13 14 T’

FIG. 15. As in Fig. 13, but for the daily 850-hPa vector wind field.
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FIG. 16. Vertical distributions of (left) the annual mean predictability limit (in days) of the
zonal mean daily geopotential height field and (right) the vertical profile of its meridional

mean. Here, Tp denotes the predictability limit.

In the boreal summer, the predictability limit of the
daily 850-hPa vector wind field is very high in the western
North Pacific, northern Indian, and equatorial eastern
Pacific Oceans. Predictions of the daily 850-hPa vector
wind field in the western North Pacific are important for
forecasting the East Asian summer monsoon. In the bo-
real winter, the predictability limit of the daily 850-hPa
vector wind field is relatively high in the southern tropical
Indian, tropical Africa, North Pacific, and North Atlantic
Oceans.

We also investigated the vertical distributions of the
predictability limit of the daily zonal mean geopotential
height and wind fields (Figs. 16 and 17), and found that
the predictability limits increase with height for all
latitudes. The predictability limit is less than 3 weeks in
the troposphere, whereas it is about 1 month in the
lower stratosphere. This finding is consistent with the
observation that tropospheric weather patterns tend to
change on time scales of several days, and that circu-
lation regimes in the stratosphere tend to persist for

pressure (hPa)

80S 60S 405 20N

EQ

9 12 15 18 21

24

several weeks or longer (Baldwin and Dunkerton 2001;
Baldwin et al. 2003). In the lower stratosphere, the
predictability limit of the daily zonal mean vector wind
field in the tropics is much higher than that in the mid-
to high latitudes in both hemispheres, possibly related to
the phenomenon of the quasi-biennial oscillation (QBO;
Holton and Lindzen 1972) in the tropical stratosphere.
Baldwin et al. (2003) reported that persistent circulation
anomalies in the lowermost stratosphere could affect the
troposphere through changes to waves in the upper tro-
posphere, which induces surface pressure changes that
correspond to the Northern Hemisphere annular mode
(NAM). In this way, slow variations of the circulation
in the stratosphere may help to increase the skill of
extended-range (beyond 10 days) tropospheric weather
forecasts. If operational forecast models could ade-
quately resolve the stratosphere—troposphere coupling
in the future, the stratosphere may be a potential pre-
dictability source for forecasting the extended-range
weather in the troposphere.
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FIG. 17. As in Fig. 16, but for the zonal mean daily vector wind fields.
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7. Summary

We have presented a new algorithm that yields esti-
mates of the NLLE and its derivatives from experi-
mental or observational data. The algorithm allows us to
search for the local dynamical analogs from experi-
mental or observational time series. By investigating the
divergence of the distance between local dynamical
analogs, the limit of local predictability may be quanti-
tatively determined. Using the algorithm, we performed
a quantitative analysis on temporal-spatial distributions
of the predictability limits of the daily geopotential
height and wind fields.

For the daily 500-hPa geopotential height field, the
limit of weather predictability appears to have a zonal
distribution, with a maximum limit of 10-14 days over
the tropics and Antarctic, followed by 8-11 days over the
Arctic, and 6-11 days over the mid- to high latitudes of
the Northern Hemisphere; the lowest limit of 4-6 days is
in the Southern Hemisphere midlatitudes. Compared
with the daily 500-hPa geopotential height field, the
daily 850-hPa vector wind field has a relatively lower
predictability limit over most of the globe. The limit is
less than 6 days worldwide, except in the tropics, North
Pacific, and North Atlantic, where it is beyond 7 days.
The predictability limits of the daily 500-hPa geo-
potential height and 850-hPa vector wind fields vary
with season. The predictability limit in autumn is gen-
erally higher than that in spring. For most regions in the
Antarctic and the tropical Indian, North Pacific, and North
Atlantic Oceans, the mean predictability limit in winter is
much higher than that in summer. The vertical distribu-
tions of the predictability limits of the daily geopotential
height and wind fields show an increase in their pre-
dictability limits with height. The fact that the pre-
dictability limits of the two daily variables are less than
3 weeks in the troposphere and are about 1 month in
the lower stratosphere indicates that the stratosphere
may be used as a potential predictability source.
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