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ABSTRACT

To quantify the predictability limit of a chaotic system, the authors recently developed a method using the

nonlinear local Lyapunov exponent (NLLE). The NLLE method provides a measure of local predictability

limit of chaotic systems and is intended to supplement existing predictability methods. To apply the NLLE in

studies of actual atmospheric predictability, an algorithm based on local dynamical analogs is devised to

enable the estimation of the NLLE and its derivatives using experimental or observational data. Two ex-

amples are given to illustrate the effectiveness of the algorithm, involving the Lorenz63 three-variable model

and the Lorenz96 forty-variable model; they reveal that the algorithm is applicable in estimating the NLLE of

a chaotic system from its experimental time series. On this basis, the NLLE method is used to investigate

temporal–spatial distributions of predictability limits of the daily geopotential height and wind fields. The

limit of atmospheric predictability varies widely with region, altitude, and season. The predictability limits of

the daily geopotential height and wind fields are generally less than 3 weeks in the troposphere, whereas they

are approximately 1 month in the lower stratosphere, revealing a potential predictability source for fore-

casting weather from the stratosphere. Further work is required to examine broader applications of the NLLE

method in predictability studies of the atmosphere, ocean, and other systems.

1. Introduction

Since the pioneering works of Thompson (1957) and

Lorenz (1963, 1965), atmospheric predictability has

been extensively studied based on theoretical, numeri-

cal, and statistical models (e.g., Smagorinsky 1969; Leith

1983; Dalcher and Kalnay 1987; Fraedrich 1986, 1987;

Chou 1989; Farrell 1990; Simmons et al. 1995; Palmer

2006). It has long been recognized that the upper limit of

weather predictability for the synoptic and larger scales

is about 2 weeks. This limit gives a general estimate of

weather predictability for the global atmosphere. How-

ever, atmospheric predictability is largely a function of

location and season (González-Miranda 1997; Kumar

et al. 2003; Reichler and Roads 2004; Chen et al. 2006),

implying that a three-dimensional structure of the pre-

dictability limit exists in the global atmosphere. Previous

studies have investigated the temporal–spatial distribution

of atmospheric predictability (Rowell 1998; Kumar et al.

2003; Reichler and Roads 2004); however, these studies

were based primarily on numerical models, for which

model deficiencies would have strongly influenced the

estimates of atmospheric predictability. Moreover, these

studies provided only qualitative estimates of atmo-

spheric predictability, such as information on regions

with either higher or lower predictability but no further

details. As a result, a method for quantitatively estimat-

ing the temporal–spatial distribution of the atmospheric

predictability limit needs to be developed.

Observed atmospheric data contain almost all of the

real information regarding the day-to-day movement

and evolution of weather systems. Given that the precise

dynamical equations of atmospheric motion are explicitly

unknown, it is more appropriate to investigate quan-

titatively the temporal–spatial distribution of the at-

mospheric predictability limit based on observational

data. Estimation of atmospheric predictability based on

circulation analogs has been discussed in previous studies

(Lorenz 1969; Chen 1989; Toth 1991; Trevisan 1995).

Lorenz (1969) introduced the so-called natural analogs,

over a very large region such as the Northern Hemisphere
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or the globe, which is also termed the global analog or

spatial pattern analog, to study global predictability over

the globe, a hemisphere, or a large region. According to

Van den Dool (1994), it would take a library of order

1030 yr to find good global analogs over a large region

such as the Northern Hemisphere (where the number of

spatial degrees of freedom is large). Obviously, it is im-

possible to find good global analogs with current libraries

of historical atmospheric data (order 10–100 yr). How-

ever, over a small enough area (where the number of

spatial degrees of freedom is relatively small), the prob-

ability of finding good analogs is great with only 10–

100 yr of data (Van den Dool 1994). Consequently, it

is possible to use current libraries of historical atmo-

spheric data to investigate the local predictability of the

atmosphere.

The main purpose of this study is to develop a new

method using local dynamical analogs for quantita-

tively investigating the temporal–spatial distribution

of the atmospheric predictability limit. The method is

based on the nonlinear local Lyapunov exponent (NLLE),

which is a nonlinear generalization to the existing local

or finite-time Lyapunov exponents. In the studies of

nonlinear dynamical systems, the Lyapunov exponents

measure the average exponential rates of divergence or

convergence of nearby orbits on a strange attractor and,

thus, quantify the average predictability properties of a

chaotic system (Oseledec 1968). By definition, if the

initial perturbation is of the size d0 and if the accepted

error tolerance D remains small, then the largest Lyapunov

exponent lmax provides an estimate of the average pre-

dictability time in a chaotic system: Tp ; 1/lmax ln(D/d0)

(Eckmann and Ruelle 1985; Wolf et al. 1985; Lorenz

1996). Therefore, the largest Lyapunov exponent is an

important parameter that characterizes the average

predictability of chaotic systems. For systems whose

equations of motion are explicitly known, a standard

algorithm has been developed for computing the largest

Lyapunov exponent (Shimada and Nagashima 1979;

Benettin et al. 1980). There also exist several algorithms

for calculating the largest Lyapunov exponent from a

time series (Sano and Sawada 1985; Wolf et al. 1985).

Whereas the (global) Lyapunov exponent provides

a measure of the total predictability of a system, it is

sometimes useful to estimate the local predictability

around a point x0 in phase space. Consequently, various

local or finite-time Lyapunov exponents have been

proposed (Yoden and Nomura 1993; Kazantsev 1999;

Ziehmann et al. 2000), for measuring the short-term

growth rate of small initial perturbations. However, the

existing local or finite-time Lyapunov exponents, which

are similar to the global Lyapunov exponents, are estab-

lished based on the assumption that the initial perturbations

are sufficiently small that their evolution can be ap-

proximately governed by the tangent linear model (TLM)

of a nonlinear system, which essentially belongs to linear

error growth dynamics. Clearly, as long as an uncertainty

remains infinitesimal within the framework of the linear

error growth dynamics, it cannot pose a limit to pre-

dictability. Therefore, nonlinear patterns of behavior

in error growth should be considered when determining

the predictability limit (Lacarra and Talagrand 1988;

Mu 2000).

In view of the limitations of linear error growth dy-

namics, it is necessary to propose a new method based

on nonlinear error growth dynamics for quantifying

the predictability limit of chaotic systems. Recently, the

NLLE has been introduced to study the predictability of

an n-dimensional chaotic system or a single variable

within the system (Li et al. 2006; Ding and Li 2007;

Ding et al. 2008; Li and Ding 2009; Li and Wang 2008).

The NLLE measures the average growth rate of the ini-

tial errors of nonlinear dynamical models without line-

arizing the governing equations. The experimental results

from Ding and Li (2007) showed that, with the NLLE and

its derivatives, the limit of dynamic predictability in large

classes of chaotic systems can be efficiently and quan-

titatively determined. Compared to a linear method, the

NLLE is more suitable for determining quantitatively

the predictability limit of a chaotic system.

In addition to the NLLE, other definitions based on

the fully nonlinear equations, such as the finite-size

Lyapunov exponent (FSLE; Aurell et al. 1997; Boffetta

et al. 1998), have been introduced and applied to analyses

of geophysical flows, yielding interesting results. The

NLLE bears some similarities to the FSLE, as both

examine the nonlinear error growth of initial errors in

order to overcome the limitations of the Lyapunov ex-

ponents. However, some differences exist between the

NLLE and the FSLE. For example, the FSLE only de-

pends on initial errors, while the NLLE depends not only

on initial errors but also on the initial state and evolution

time. In addition, the NLLE can be used to measure the

averaged growth rate of the initial errors of the entire

n-dimensional system and a single variable of the system,

whereas the FSLE only measures the average growth rate

of the initial errors of the entire n-dimensional system.

Most importantly, the NLLE may effectively quantify the

predictability limit of chaotic systems, while the FSLE

focuses on examining the nonlinear error growth rate of

the initial errors.

With regard to the computation of the NLLE, if the

system’s equations of motion are explicitly known, such

as the Lorenz63 model (Lorenz 1963), we can directly

obtain the mean NLLE and the mean error growth via

numerical integration of the Lorenz63 model and its
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error evolution equations (Ding and Li 2007; Ding

et al. 2008). However, the atmosphere is an infinite-

dimensional system, in which there are many parameters

and physical processes that are explicitly unknown. For-

tunately, for many systems in reality, we can obtain

observational data, although the explicit governing equa-

tions of such data are probably unknown. Consequently, it

is possible to estimate the NLLE by making use of the

observational data available.

In previous studies, if experimental or observational

data were available for a single variable of a chaotic sys-

tem, the method of phase space reconstruction by time

delay embedding was then applied in reconstructing the

phase space of the system (Sano and Sawada 1985; Wolf

et al. 1985; Fraedrich 1986, 1987; Keppenne and Nicolis

1989). To achieve a good reconstruction, two parameters

we need to estimate are the time delay and the embedding

dimension. The standard method used to determine the

time delay is based on automutual information, and

that used to determine the embedding dimension is the

false nearest-neighbor method (Kantz and Schreiber

1997, 36–39). The Lyapunov exponents are estimated

by calculating the mean exponential divergence rate of

initially close trajectories in the reconstructed phase

space. However, in practical applications many diffi-

culties are encountered in the appropriate selection of

the embedding dimension (Holzfuss and Lauterborn 1989;

Li and Chou 1996). The estimation of Lyapunov expo-

nents is sensitive to the choice of the embedding di-

mension. How small or large the embedding dimension

is will lead to spurious Lyapunov exponents. These spu-

rious Lyapunov exponents can sometimes be larger than

the true Lyapunov exponents, which can then lead to

erroneous conclusions of the predictability time of

chaotic systems.

In addition, Wolf et al. (1985) pointed out that the

required number of experimental or observational data

points for accurate calculation of the Lyapunov expo-

nent ranges from 10d to 30d, where d is related to the

dimension of the attractor. For chaotic systems with

rather broad spectra, such as the atmosphere, whose at-

tractor is generally of a very large dimension, one must

have a very large amount of observational data for the

accurate calculation of the Lyapunov exponent. In fact,

current libraries of historical atmospheric data are not

large enough to provide such data. Consequently, studies

of atmospheric predictability using the method of phase

space reconstruction are severely limited by relatively

short observational records of the atmosphere, which is

similar to the situation using the method of global analogs.

In the present study, as an alternative to the global

analog, we introduce a local dynamical analog and de-

velop a new algorithm to search for the local dynamical

analog from experimental or observational time series,

thereby enabling an estimate of the NLLE. For a small

local region or a single grid point, the small number of

spatial degrees of freedom makes it possible to find good

local dynamical analogs with current libraries of his-

torical atmospheric data (Van den Dool 1994). The new

algorithm allows us to search for local dynamical analogs

from observational time series, avoiding the phase space

reconstruction and thereby eliminating the possibility of

generating a spurious estimate of the NLLE. Based on

this new algorithm, the NLLE and its derivatives can be

used to investigate quantitatively the temporal–spatial

distribution of the atmospheric predictability limit. We,

therefore, term our entire approach the NLLE method.

It should be pointed out that Chen et al. (2006) de-

scribed a rather preliminary algorithm to estimate the

NLLE and applied the NLLE to study the predictability

of the 500-hPa geopotential height field. The NLLE

method in this paper presents a substantial improve-

ment and a wider application compared to the findings

of Chen et al. (2006). The remainder of this paper is

arranged as follows. Section 2 provides a brief description

of the NLLE and its application in estimating the pre-

dictability limit, and section 3 introduces the algorithm

based on local dynamical analogs to estimate the NLLE

using experimental or observational data. Section 4 tests

the validity of the algorithm by applying it to a simple

system, the Lorenz63 model (Lorenz 1963), and to a rel-

atively complex example, the Lorenz96 model (Lorenz

1996). Data requirements and noise problems of the

NLLE method are discussed in section 5. Section 6 shows

an application of the NLLE method in atmospheric

predictability, followed by a summary in section 7.

2. Nonlinear local Lyapunov exponent (NLLE)
and predictability limit

a. NLLE of an n-dimensional dynamical system

Consider a general n-dimensional nonlinear dynami-

cal system whose evolution is governed by

dx

dt
5 F(x), (1)

where x 5 [x
1
(t), x

2
(t), . . . . . . , x

n
(t)]T is the state vector

at time t, the superscript T is the transpose, and F rep-

resents the dynamics. The evolution of a small error

d 5 [d1(t), d2(t), . . . . . . , dn(t)]T, superimposed on a state

x, is governed by the nonlinear equations:

d

dt
d 5 J(x)d 1 G(x, d), (2)
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where J(x)d are the tangent linear terms and G(x, d) are

the high-order nonlinear terms of the error d. Because

of some difficulties in solving the nonlinear problem,

most previous studies (e.g., Lorenz 1965; Eckmann and

Ruelle 1985; Yoden and Nomura 1993; Kazantsev 1999;

Ziehmann et al. 2000) assumed that the initial perturba-

tions were sufficiently small that their evolutions could

be approximately governed by the following linear

equations:

d

dt
d 5 J(x)d. (3)

However, the evolution of the linear error is character-

ized by continuous exponential growth, which is not

applicable to a description of a process that involves the

initial exponential growth of sufficiently small errors to

finally achieve saturation (Ding and Li 2007). To de-

termine the limit of predictability, any proposed ‘‘local

Lyapunov exponent’’ should be defined with respect to

the nonlinear behavior of nonlinear dynamical systems.

Without a linear approximation, the solutions of Eq. (2)

can be obtained by numerically integrating it along the

reference solution x from t 5 t0 to t0 1 t:

d1 5 h(x0, d0, t)d0, (4)

where d1 5d(t0 1t), x0 5x(t0), d0 5d(t0), and h(x0,d0,t)

is the nonlinear propagator. The NLLE is then defined as

l(x0, d0, t) 5
1

t
ln
kd1k
kd0k

, (5)

where l(x0, d0, t) depends in general on the initial state

x0 in phase space, the initial error d0, and time t. The

NLLE differs from existing local or finite-time Lyapunov

exponents defined based on linear error dynamics

(Kazantsev 1999; Yoden and Nomura 1993; Ziehmann

et al. 2000), which depend solely on the initial state x0

and time t, not on the initial error d0. In the double

limits of kd0k/0 and t / ‘, the NLLE converges to

the largest global Lyapunov exponent, lmax (Ding and

Li 2007). The ensemble mean NLLE over the global

attractor of the dynamical system is given by

l(d0, t) 5

ð
V

l(x0, d0, t) dx

5 hl(x0, d0, t)iN (N/‘), (6)

where V represents the domain of the global attractor of

the system and hiN denotes the ensemble average of

samples of sufficiently large size N (N / ‘). The mean

relative growth of the initial error (RGIE) can be ob-

tained by

E(d0, t) 5 exp[l(d0, t)t]. (7)

Using the saturation theorem from Ding and Li (2007),

we obtain

E(d0, t) ���!p c (N/‘), (8)

where ���!p
denotes the convergence in probability and

c is a constant that depends on the converged probability

distribution P of error growth. The constant c can be

considered as the theoretical saturation level of E(d0, t).

Once the error growth reaches the saturation level, al-

most all information on initial states is lost and the

prediction becomes meaningless. Using the theoretical

saturation level, the limit of the dynamical predictability

can be quantitatively determined (Li et al. 2006; Ding

and Li 2007). To estimate the maximum predictability

time of chaotic systems, the predictability limit is de-

fined as the time at which the error reaches 99% of its

saturation level.

b. NLLE of a single variable

The definition of the NLLE in Eq. (5) aims to quantify

the local error growth rate of the entire n-dimensional

system, and the magnitude of the error vector is mea-

sured by the norm of the n-dimensional vector. How-

ever, different variables of an n-dimensional chaotic

system may have different predictabilities. To quantify

the error growth rates and predictabilities of different

variables from an n-dimensional chaotic system, we

define the NLLE of a single variable, xi(i 5 1, 2, . . . . . . ,

n), based on Eq. (5):

ji(x0, d0, t) 5
1

t
ln
jdi(t01 t)j
jdi(t0)j . (9)

Similarly, the mean NLLE and RGIE of the variable xi

can be obtained as follows:

ji(d0, t) 5

ð
V

xi

ji(x0, d0, t) dxi

5 hji(x0, d0, t)iN (N/‘), and (10)

Fi(d0, t) 5 exp[ji(d0, t)t]. (11)

From Eqs. (9)–(11), we obtain

Fi(d0, t) 5 exp

"
1

N
�
N

j51
ln
jdij(t01 t)j
jdij(t0)j

#
. (12)
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For a given initial error di(t0) of variable xi, we have

Fi(d0, t) 5 P
N

j51
jdij(t01 t)j

" #1/N

jdi(t0)j .
�

(13)

For chaotic systems, as t / ‘, jdi1(t0 1 t)j , jdi2(t0 1 t)j ,
. . . . . . , jdiN(t0 1 t)j are independent and identically dis-

tributed, following

f (x) 5
p(x), 0 # x # a,

0, x , 0 or x . a,

�
(14)

where a is a positive constant [because the chaotic at-

tractor is confined to a finite region, a is thought to be the

maximum value of di(t0 1 t)], and p(x) is a continuous

function defined over an enclosed interval [0, a]. Using

the Khinchine’s weak law of large numbers (Rose and

Smith 2002), as t / ‘, in the same way as in Eq. (8), we

can prove

Fi(d0, t) ���!p ci (N/‘), (15)

where ci can be considered the theoretical saturation

level of Fi[d(t0), t]. Using the theoretical saturation

level ci, the limit of the dynamical predictability of var-

iable xi can be quantitatively determined. Li and Ding

(2009) showed that the predictability limits of different

variables in multidimensional chaotic systems are in-

terrelated with each other. The ratio of the predictability

limit of a single variable to that of the entire system

remains almost constant, regardless of the magnitude of

initial errors.

3. An algorithm based on local dynamical analogs
to estimate the NLLE from experimental or
observational data

As stated above, the NLLE can be determined by Eqs.

(5) or (9) if the governing equations of an n-dimensional

dynamical system are explicitly known. However, if we

only obtain the experimental data of a single variable x

of an n-dimensional chaotic system, or observe the at-

mospheric data of variable x at one point of n spatial

grid points [e.g., the time series of x is given by

fx(t
i
), i 5 0, 1, 2, . . . . . . , m 2 1g where m represents the

length of the time series], the question of how to estimate

the NLLE of variable x from the time series is of practical

significance. To estimate the NLLE, it is necessary to

examine the growth rate of the distance between two

initially close states in phase space. Thus, the first step

is to seek analogous initial states from the time series.

Because only the time series of variable x is available

(information is lacking regarding other variables of the

n-dimensional system), it is necessary to develop a tech-

nique that simply relies on variable x to find local anal-

ogous states in the n-dimensional phase space. On the one

hand, variable x has a small initial error between two local

analogous states; on the other hand, other variables have

as small initial errors as possible.

For chaotic systems, the evolutions of two states are

sure to be analogous over a short time if they are anal-

ogous at the initial time (Lorenz 1969; Wolf et al. 1985).

Conversely, it is highly likely that two states are analo-

gous at the initial time if their evolutions in phase space

are analogous during the initial stage (i.e., over a short

time). By simply relying on the variable x, we can take

advantage of this property of chaotic systems to search

for local analogous states and to exclude, as much as

possible, local nonanalogous states. Without recon-

struction of the phase space, the initial information and

evolutionary information on the reference trajectory of

variable x are used to search for local analogs in space

phase. In this way, it is almost impossible to find true

analogs in full space or over a very large region. How-

ever, it is possible to find good local analogs at a point or

over a relatively small region, thereby enabling us to

quantitatively estimate the limit of local predictability.

This analog is referred to as a ‘‘local dynamical analog.’’

An algorithm that allows an estimation of the mean

NLLE from the experimental or observational time se-

ries of variable x is given as follows.

a. Step 1

Taking x(t0) as the reference point at time t0, we first

seek the local dynamical analog x(tk) of the reference

point from the dataset. Two distances (i.e., the initial

distance between two points and the evolutionary dis-

tance between their trajectories within a short initial

period) are used to measure the degree of similarity

between the points. All points x(tj)(jtj 2 t0j . tD, where

tD is the time taken for autocorrelations of the variable x

to drop to around 0.0, ensuring that a good analog pair is

not merely due to persistence) in the dataset form a set

S. The initial distance di between the points x(t0) and

x(tj) is given by

di 5 jx(t0) 2 x(tj)j . (16)

We assume that the evolutions of the two points are

analogous over a very short time t, if they are analogous

at the initial time. The choice of the short time interval t

depends on the persistence of the variable x; if the per-

sistence is low, the time over which two initially close

points remain analogous is relatively short. The time

taken for autocorrelations of variable x to drop to 0.9

can be regarded as a rough estimate of the short time
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interval t. A high value (0.9) of autocorrelation is chosen

to ensure a short time interval (the results were found to

be insensitive to the selected value). Within the short

interval t [t 5 KD, where D is the sampling interval of

the time series (i.e., D 5 ti 2 ti21) and K is the ratio of t to

D], the evolutionary distance de between the two points

x(t0) and x(tj) is given by

de 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K 1 1
�
K

i50
[x(ti) 2 x(tj1i)]2

vuut
. (17)

Here, di is the amount of the initial separation between

the two points x(t0) and x(tj), while de is the evolutionary

distance between their trajectories over a short initial

period. The total distance dt, considering not only the

initial distance but also the evolutionary distance, is

found by adding di and de:

dt 5 di 1 de. (18)

If dt is very small, it is highly likely that the points x(t0)

and x(tj) are locally dynamically analogous at the initial

time.

Of course, this approach is unlikely to exclude the

possibility that only the variable x and its most relevant

variables remain close, whereas other variables evolve

very differently over time, especially for high-dimensional

dynamical systems. Therefore, the analogs based on the

variable x are only local analogs and that they cannot

simply be considered to be global analogs. The constraint

of the total distance dt, which contains both initial in-

formation and evolutionary information over a short in-

terval, allows us to exclude a large portion of all points

with large initial distances, thereby helping us to find

a truly local analog of the reference point.

For every point x(tj) in the set S, the value of dt can be

determined. The nearest-neighbor (local dynamical an-

alog) x(tk) of the reference point x(t0) can be chosen

from the set S only if dt is the minimum. Then, the initial

distance between x(t0) and x(tk) is denoted as follows:

L(t0) 5 jx(t0) 2 x(tk)j . (19)

b. Step 2

At time ti 5 t0 1 i 3 D (i 5 1, 2, 3, . . . . . . , M, where M is

the total number of time steps), x(t0) will have evolved

to x(ti) along the reference trajectory, and x(tk) will

have evolved into x(tk1i) along the analogous trajectory

(Fig. 1). The initial difference L(t0) will have become

L(ti) 5 jx(ti) 2 x(tk1i)j . (20)

The growth rate of the initial error during the time in-

terval (ti 2 t0) is

j1(ti) 5
1

ti 2 t0
ln

L(ti)

L(t0)
. (21)

With i gradually increasing, we can obtain the variation

of j1(ti) as a function of the evolution time ti (i 5 1, 2,

3, . . . . . . , M).

c. Step 3

Taking x(t1) as the reference state and repeating steps

1 and 2 above (see Fig. 1), we obtain the variation of

j2(ti) as a function of the evolution time ti.

FIG. 1. A schematic representation of the evolution procedure used to estimate the NLLE

from experimental or observational data. The evolution trajectory of a local dynamical analog

of the reference point at time ti (i 5 0, 1, 2, . . .) is denoted as an analogous trajectory (i 1 1). The

average of the growth rates of the distances between the reference trajectory and all analogous

trajectories is used to estimate the NLLE.
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d. Step 4

The above procedure is repeated until the trajectory

reaches the last reference point x(tm2M21). By taking

the average of the error growth rates at all reference

points, fx(t
0
), x(t

1
), . . . . . . , x(t

m2M21
)g, we obtain the

mean NLLE:

j(ti) 5
1

N
�
N

k51
jk(ti), (i 5 1, 2, 3, . . . . . . , M), (22)

where N 5 m 2 M is the total number of reference

points on the reference trajectory.

e. Step 5

From Eqs. (21) and (22), we obtain the approximation

of the RGIE:

F(ti) 5 exp[j(ti)(ti 2 t0)], (i 5 1, 2, 3, . . . . . . , M).

(23)

By investigating the evolution of F(ti) with increasing ti,

we can estimate the mean predictability limit of the

variable x.

For systems whose equations of motion are explicitly

known, such as the Lorenz63 model, their error growth

equations can also be explicitly known. By analyzing the

probability distribution of the initial distances between

the reference points and their local dynamical analogs

using the above algorithm, we find that the initial dis-

tances of the variable x follow a lognormal distribution,

becoming a Gaussian distribution after a logarithmic

transform. Similar results have been found by Gutiérrez

et al. (2008) and Primo et al. (2008), who pointed out

that the spatial finite perturbations in spatiotemporal

chaos follow a lognormal distribution and that they be-

come Gaussian after a logarithmic transform.

By analyzing the Gaussian distribution, we can obtain

the initial distance of the variable x with the maximum

probability. In step 1 of the algorithm, suppose that the

local dynamical analog of the reference point x(t0) can

be found at time tk, the initial distances of variables

other than x in a multivariable system could then be

obtained at the same time by calculating the difference

between the values at times t0 and tk. The initial dis-

tances of other variables are also found to follow a log-

normal distribution. Hence, the initial distances of other

variables with the maximum probability can also be

determined. Taking the initial distances of all variables

with the maximum probability as the initial perturba-

tions, error growth equations of chaotic systems can

yield theoretical results of the NLLE. Finally, we can

test the validity of the above algorithm by comparing the

experimental results obtained using the algorithm with

the theoretical results. If the two results are close and the

initial perturbation of variable x with the maximum

probability is relatively small, the experimental results

obtained using the algorithm are considered meaningful.

4. Case studies

a. The Lorenz63 model

The Lorenz63 model is

dX/dt 5 2sX 1 sY

dY/dt 5 rX 2 Y 2 XZ

dZ/dt 5 XY 2 bZ

,

8<
: (24)

where s 5 10, r 5 28, and b 5 8/3, for which the well-

known butterfly attractor exists (Lorenz 1963). The time

series of variables X, Y, and Z of the Lorenz system can

be obtained by using the fourth-order Runge–Kutta

method with a time step of D 5 0.01. The time series

includes 8 3 104 points. The error growth equations of

the Lorenz63 model are

ddX/dt 5 2sdX 1 sdY

ddY/dt 5 (r 2 Z)dX 2 dY 2 (X 1 dX)dZ

ddZ/dt 5 (Y 1 dY)dX 1 XdY 2 bdZ

,

8<
: (25)

where dX, dY, and dZ are the errors superposed on

variables X, Y, and Z, respectively.

Figure 2 shows the probability distribution of the

initial distances between the reference points and their

local dynamical analogs of variable X. The probability

distribution of the initial distances for variables Y and Z

can be obtained after the local dynamical analogs of

variable X have been found. The initial distances of

variables X, Y, and Z with the maximum probability are

e24.2, e23.0, and e22.2, respectively. Although the local

dynamical analogs of reference points are searched for

based on the variable X, the initial distances of variables

Y and Z are relatively small compared with their in-

dividual standard deviations, indicating that for a very

large proportion of reference points their true analogs

could be found. By taking e24.2, e23.0, and e22.2 as initial

perturbations of variables X, Y, and Z, respectively, the

mean error growth of the variable X is obtained via the

error growth equations of the Lorenz63 model.

Figure 3a shows two curves that correspond to the

mean error growth of the variable X based on the al-

gorithm and the theoretical result from the error growth

equations of the Lorenz63 model. The root-mean-

square distance (RMSD) between the two curves is
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RMSD 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
M

i51
( fi 2 gi)

2 M

,vuut
,

where fi and gi are the values of the two curves at each

time step, and M is the total number of time steps. The

RMSD between the two curves in Fig. 3a is very small

(0.11), indicating that the experimental and theoretical

results are largely consistent.

Similarly, the mean error growth curves of variables

Y and Z based on the algorithm show little difference

with the curves of the error growth equations, yielding

RMSD values of 0.17 and 0.21, respectively (Figs. 3b and

3c). The results demonstrate that the mean error growth

rates of variables X, Y, and Z, as estimated by using the

algorithm, closely correspond to the theoretical values

derived from the error growth equations. These results

verify the validity of the algorithm in determining the

mean error growth from the experimental data of a sin-

gle variable of the Lorenz63 model.

b. The Lorenz96 model

The Lorenz63 model is a relatively simple chaotic

system with variables that evolve in a low-dimensional

attractor. Is the algorithm applicable to more complex,

high-dimensional chaotic systems? To answer this

question, we chose the Lorenz96 model as an example.

The Lorenz96 model (Lorenz 1996) is a 40-variable

model that has been used by various authors as a low-

order proxy for atmospheric prediction and assimilation

studies (e.g., Lorenz and Emanuel 1998; Anderson 2001;

Annan 2004). The model has 40 state variables,

X
1
, X

2
, . . . , X

40
, which are governed by the equation

dXi/dt 5 (Xi11 2 Xi22)Xi21 2 Xi 1 F, (26)

where the index 1 # i # 40 is arranged cyclically and

F is a fixed forcing. The variables Xi (1 # i # 40) of

the Lorenz96 model may be thought of as values of

some atmospheric quantity in 40 sectors of a latitude

circle. The model is integrated with the fourth-order

Runge–Kutta method with a time step of D 5 0.05.

When F 5 8.0, the model displays sensitive dependence

FIG. 2. Probability distributions of the initial distance di of var-

iables X (red line), Y (green line), and Z (blue line) from the

Lorenz63 model when the local dynamical analogs of reference

points are searched for based on the variable X.

FIG. 3. (a) Mean error growth of variable X of the Lorenz63

model as estimated by the algorithm outlined in section 3 (red line)

and the theoretical growth (blue line) from the error growth

equations of the Lorenz63 model, in which e24.2, e23.0, and e22.2 are

taken as initial perturbations of variables X, Y, and Z, respectively.

(b) As in (a), but for variable Y of the Lorenz63 model. (c) As in (a),

but for variable Z of the Lorenz63 model. In (a)–(c), F denotes the

mean error of variables X, Y, and Z, respectively; t denotes time.
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on the initial conditions. We can obtain the time series

of variables Xi (1 # i # 40) of the Lorenz96 model with

the length of m 5 105. The error growth equation of the

Lorenz96 model is as follows:

ddXi/dt5(dXi11 2 dXi22)Xi21

1(Xi111dXi11 2 Xi22 2 dXi22)dXi21 2 dXi,

(27)

where dXi is the error on variables Xi (1 # i # 40). To

enhance the information from other variables, the

nearest variables Xi21 and Xi11 of variable Xi are con-

sidered when the neighboring points of Xi are searched

for using the algorithm. That is, the distance between the

reference point Xi(t0) and the other point Xi(tj) is re-

placed by the one between the points [Xi21(t0), Xi(t0),

Xi11(t0)] and [Xi21(tj), Xi(tj), Xi21(tj)] as follows:

d5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
[(X0

i 2X
j
i )

2
1(X0

i21 2 X
j
i21)2

1(X0
i11 2 X

j
i11)2]

r
,

(28)

where X0
i 5 X

i
(t

0
), X0

i21 5 X
i21

(t
0
), X0

i11 5 X
i11

(t
0
),

X
j
i 5 Xi(tj), X

j
i21 5 Xi21(tj), and X

j
i11 5 Xi11(tj). The

variable Xi represents the value of some atmospheric

quantity in only one sector of a latitude circle. The

variables Xi21 and Xi11 are considered when the local

dynamical analogs of Xi are searched for, which is equiv-

alent to a search for the local dynamical analogs of Xi in

a larger region.

Figure 4 shows the probability distribution of the initial

distances of variables Xi (1 # i # 40) of the Lorenz96

model when the neighbors of the reference points are

searched for based on the variable X1 (the nearest vari-

ables X2 and X40 of X1 are also included, but are denoted

as X1 for simplicity). It is clear that only X1 has relatively

small initial distances between the reference points and

their local dynamical analogs and that the initial distances

become larger as the other variables depart further from

X1. The initial distances of variables X
i

(i 5 1, 3, 38, 39)

with the maximum probability are e22.0, e0.4, e0.4, and e0.0,

respectively, while other variables Xi (4 # i # 37) have

the same initial distance of e1.2. This result indicates that

only X1 and its most relevant variables (including X3, X38,

and X39) have small initial perturbations, while the initial

perturbations of other variables (including Xi, 4 # i # 37)

are relatively large. Certainly, the analogs based on X1

cannot be called global analogs, and they are only local

analogs. According to traditional views of global analogs,

these analogs cannot be considered to be good analogs.

However, although the mean error of X1 shows a rapid

increase due to the error propagation of other variables,

the small initial error of X1 reaches saturation after some

time, suggesting that there still exists a certain pre-

dictability limit for this variable (Fig. 5).

If the predictability limit is defined as the time at

which the error reaches 99% of its saturation level, the

predictability limit of X1 is determined to be about 30

time steps. Taking the initial distances with the maxi-

mum probability as initial perturbations, the mean error

growth of X1, as calculated by the algorithm, is largely

consistent with that derived from the error growth

equations, with an RMSD of 0.12 for the two curves in

Fig. 5. In addition to X1, the same algorithm is applied to

other variables, revealing that the mean error growth of

other variables is similar to that of X1. The predictability

limit of other variables is also close to 30 time steps.

FIG. 4. Probability distributions of the initial distance di of var-

iables X1, X2, and X40 (light blue lines, which overlap with each

other and therefore cannot be distinguished), X3 (red line), X39

(green line), X4 (blue line), X38 (yellow line), and Xi (i 5 5, . . . . . . , 37;

black lines) of the Lorenz96 model when the local dynamical analogs

of reference points are searched for based on the variable X1.

FIG. 5. As in Fig. 3, but for variable X1 of the Lorenz96 model. In

the error growth equations of the Lorenz96 model, e22.0, e0.0, e0.4,

and e0.4 are taken as initial perturbations of variables X1 (and the

same for X2 and X40), X39, X3, and X38, respectively; other vari-

ables Xi (4 # i # 37) have initial perturbations of e1.2.
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Further analysis shows that the predictability limit of

each variable, as obtained from the error growth equa-

tions of the Lorenz96 model with an initial error of 1.5

on every variable, is about 30 time steps (not shown).

Therefore, we infer that the predictability limit of each

variable, as deduced using the algorithm, is equivalent to

that obtained from the error growth equations with an

initial error of 1.5. The standard deviation of each var-

iable of the Lorenz96 model is about 3.0, meaning that

the initial error of 1.5 is approximately half of the stan-

dard deviation. The results show that the predictability

limit of 30 time steps is meaningful, which could be

obtained by using only a small initial error based on the

error growth equations of the Lorenz96 model.

5. Data requirements and noise

a. Data requirements

Let us now consider an important question on the

quantity of experimental or observational data required

for an accurate estimation of the predictability limit.

The time series of a certain variable should be long

enough for identification of truly local analogs at every

reference point. The amount of data required to esti-

mate the mean error growth depends on the information

of the attractor’s probability distribution. With an in-

creasing number of data points, the data will be in-

dependent and identically distributed, which follows the

attractor’s probability distribution (the number of data

points N / ‘). If the probability distribution of finite

data points (denoted as Q) is close to the attractor’s

probability distribution (denoted as P), data points can

be thought to fill out the structure of the attractor,

thereby providing truly local analogous points. There-

fore, we can estimate how many points are required by

determining if the difference between two probability

distributions P and Q remains small. The difference

between P and Q is measured by the Kullback–Leibler

(KL) divergence (Kullback and Leibler 1951). For P and

Q of a discrete random variable, the KL divergence

DKL(PkQ) of Q from P is defined as

DKL(PkQ)5 �
i

P(i) log
P(i)

Q(i)
. (29)

Taking the Lorenz63 model as an example, the

probability distribution of variable X obtained by using

the number of data points N 5 1 3 106 (from the fourth-

order Runge–Kutta method with a time step of D 5 0.01)

is considered as an approximation of the Lorenz at-

tractor’s probability distribution (denoted as P). The

probability distribution Q changes with a gradual de-

crease in the number of data points, as does the KL

divergence Q from P, being close to zero for the number

of data points N 5 5 3 104 2 9 3 105 (Fig. 6). When the

number of data points has decreased to N 5 1 3 104, the

KL divergence becomes pronounced, indicating that

the estimated probability distribution Q of variable X be-

gins to diverge from P. If the KL divergence is less than

0.01 (99%), the number of data points is considered to

be the required number of data points. Based on the

changes in the KL divergence with different numbers of

data points, the minimum number of data points re-

quired for estimating the predictability limit of variable

X is about 2 3 104.

Figure 7 shows the estimated predictability limit of

variable X as a function of the number of data points.

The limit shows a gradual decrease with decreasing

number of data points when the number of data points is

greater than 2 3 104. However, when the number of data

points is less than 2 3 104, the limit shows a rapid de-

crease with a decreasing number of data points. The

estimated predictability limit has an error of approxi-

mately 17% when using 2 3 104 data points. For vari-

ables Y and Z of the Lorenz63 model, the minimum

number of required data points is about 2 3 104 in both

cases, similar to that for the variable X (Fig. 6).

In a real situation, the number of experimental or

observational data points is finite. The probability dis-

tribution Q of experimental or observational data is

easily obtained. However, it is impossible to determine

the attractor’s probability distribution P in advance.

Therefore, it is impossible to determine the required

number of data points by investigating the KL di-

vergence between P and Q. If the probability distribu-

tion of experimental or observational data is assumed to

FIG. 6. KL divergence between the probability distributions P

and Q of variables X (red line), Y (green line), and Z (blue line) of

the Lorenz63 model. Here, P is obtained by using N 5 1 3 106 data

points. The number of data points used to obtain Q varies from 9 3

105 to 4 3 103. The horizontal dashed line shows the KL divergence

of 0.01.
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be the attractor’s probability distribution P, then Q is

the probability distribution of a certain portion of the

experimental or observational data. Figure 8 shows that

when the number of experimental data points of variable

X in the Lorenz63 model is large, the KL divergence

between P and Q increases slowly at first with a de-

creasing number of data points. In contrast, when the

number of experimental data points is very small, the

KL divergence between P and Q shows a rapid increase

at first with a decreasing number of data points. Our

experimental results indicate that the data would be

sufficient to identify good local analogs, if the KL di-

vergence is still less than 0.01 when the number of data

points is reduced to 20% of the total number of experi-

mental data points. If the KL divergence does not satisfy

this criterion, the estimate of the predictability limit, based

on experimental data, would possibly include a large error.

In Fig. 8, when the number of data points is 5 3 104, the

KL divergence is still less than 0.01 when the number of

data points is reduced to 1 3 104. However, when the

number of data points is 1 3 104, the KL divergence is

far greater than 0.01 when the number of data points is

reduced to 2 3 103. According to the criterion, 5 3 104

(1 3 104) data points of variable X1 in the Lorenz96

model are sufficient (insufficient) to identify good local

analogs. For the Lorenz96 model, 1 3 105 data points are

shown to be enough to identify good local analogs, thereby

producing a relatively small initial error in X1 (Fig. 5).

b. Noise

Experimental measurements inevitably contain noise

that leads to problems when searching for truly local

analogs of reference points. Some false analogs are in-

evitably found in noise-contaminated experimental or

observational data, thereby reducing the estimated

predictability limit. Figure 9 shows that when the am-

plitude of the Gaussian noise exceeds 0.001 s (where s is

the standard deviation of variable X of the Lorenz63

model), the predictability limit of variable X is greatly

reduced. One approach to reducing the effects of noise is

FIG. 7. Estimated predictability limit of variable X of the Lorenz63

model as a function of the number of data points. Because of large

fluctuations in error growth when a small number of data points is

used, the predictability limit here is defined as the time at which the

error reaches 90% of its saturation level, in order to reduce the ef-

fects of sampling fluctuations. The dashed line represents the pre-

dictability limit obtained using 2 3 104 data points.

FIG. 8. KL divergence between the probability distributions P

and Q of variable X of the Lorenz63 model. The solid line with dots

shows the KL divergence, where P is obtained using N 5 5 3 104

data points, and the number of data points used to obtain Q varies

from 4 3 104 to 2 3 103. The dashed line with open circles shows the

KL divergence, where P is obtained using N 5 1 3 104 data points,

and the number of data points used to obtain Q varies from 9 3 103

to 2 3 103. The horizontal dashed lines show the KL divergence of

0.01.

FIG. 9. The estimated predictability limit of variable X of the

Lorenz63 model varies with the amplitude of the Gaussian noise.

The average value of the Gaussian noise is set to 0 and its standard

deviation varies from 0.0001s to 0.5s, where s is the standard

deviation of variable X of the Lorenz63 model. Gaussian noise is

added to the entire time series of variable X. The predictability

limit here is defined in the same way as in Fig. 7, as the time at

which the error reaches 90% of its saturation level. The time series

of variable X includes 8 3 104 data points.
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to apply a low-pass filter to the experimental or ob-

servational data before estimating the predictability.

Filtering can be expected to eliminate noise, but the

predictability of the experimental or observational

data is not expected to be affected by intensive filtering.

Therefore, an appropriate low-pass filtering should

be considered to overcome problems associated with

noise. A demonstration of filtering (nine-point running

mean) for variable X of the Lorenz63 model is shown

in Fig. 10. The mean error growth curve obtained from

the filtered data is closer (with a smaller RMSD) to the

noise-free result than the one obtained from the un-

filtered data, indicating that filtering can reduce the

effects of noise and improve the estimation of mean

error growth. However, if the noise is of sufficiently

large amplitude (like 0.1s), filtering would fail to re-

duce or eliminate the effects of noise (not shown).

6. Applications of the NLLE method in
atmospheric predictability

The NLLE method can be further applied to studies

of atmospheric predictability since the global attractor

exists in the atmosphere (Li and Chou 1997, 2003; Li and

Wang 2008). As is well known, atmospheric observa-

tional data show a pronounced annual cycle because of

the seasonal march of the sun. Therefore, two points at

similar times in different years may have similar dy-

namical features, probably indicating that the points are

close to each other in phase space. We may search for

the local dynamical analog of the reference point from

all points occurring in a similar ‘‘season’’ in different

years (e.g., 645 days from the reference days for daily

observational data). This feature of the atmospheric

observation data will help us to find truly analogous

points.

Here, we analyze the four-times-daily National Cen-

ters for Environmental Prediction–National Center for

Atmospheric Research (NCEP–NCAR) reanalysis data

(1948–2007). The NCEP–NCAR reanalysis grid has

a global spatial coverage of 2.58 latitude 3 2.58 longi-

tude, or 144 3 73 grid points. Daily data are obtained as

a 1-day moving average of the 4-times-daily data. The

time series of every variable at one grid point includes

4 3 365 3 60 5 87 600 reference points. Since we use

only data of 645 days in different years from the ref-

erence days to search for the analogs, the number of data

points available for the analogs is 4 3 91 3 59 5 21 476.

In Fig. 11, only data from one season (about 4 3 90 3

60 5 21 600 data points) is used to examine the KL di-

vergence. The results show that the KL divergence of

the winter 500-hPa geopotential height at the grid point

408N, 1608W is slightly greater than 0.01 when the

number of data points is reduced to 20% of the total

number of data points. Similar results are obtained at

other grid points, indicating that the reanalysis data are

barely enough for finding good analogs of local atmo-

spheric patterns.

A single atmospheric variable at a given grid point is

denoted as Xi,j (1 # i # 144, 2 # j # 72), excluding the

North and South Poles. As with the Lorenz96 model, the

information of the nearest four grid points around the grid

FIG. 10. Estimated error growth of variable X of the Lorenz63

model from a time series with Gaussian noise (green line). The

average value of the Gaussian noise is set to 0 and its standard

deviation is 0.01s, where s is the standard deviation of variable X

of the Lorenz63 model. Gaussian noise is added to the entire time

series of variable X (total of 8 3 104 data points). The red line

shows the estimated error growth of variable X, as derived from

a nine-point running mean of the time series with Gaussian noise.

The blue line indicates the estimated error growth of variable X

from a noise-free time series. Here, F denotes the mean error of

the variable X and t denotes time.

FIG. 11. KL divergence between the probability distributions P

and Q of the winter 500-hPa geopotential height at the grid point

408N, 1608W. Here, P was obtained using 4 3 90 3 60 5 21 600 data

points. The number of data points used to obtain Q varies from 2 3

104 to 1 3 103. The horizontal dashed line shows the KL divergence

of 0.01.

3276 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



point (i, j) is considered when searching for the local

analogs of Xi,j. The distance in Eq. (28) at the grid point

(i, j) is replaced by the one between the reference values

and the neighboring values at five neighboring grid

points: (i, j), (i 2 1, j), (i 1 1, j), (i, j 21), and (i, j 1 1).

The results indicate that, although the local mean error

of the atmospheric variables shows a rapid increase due

to the propagation of large initial analogous differences

from upstream regions (not shown), good local dynamical

analogs ensure the existence of a certain local pre-

dictability limit. This limit, caused by local initial analo-

gous errors and error propagation from upstream regions,

is useful when investigating the spatial distribution of

atmospheric predictability.

Figure 12 shows the spatial distribution of the pre-

dictability limit of the daily 500-hPa geopotential height

field. The annual mean predictability limit appears to

have a zonal distribution, with a maximum of 10–14 days

over the tropics and Antarctic, followed by 8–11 days

over the Arctic, 6–11 days over the mid- to high lati-

tudes in the Northern Hemisphere, and a lowest limit of

4–6 days at the Southern Hemisphere midlatitudes. In

the midlatitudes, baroclinicity is the dominant instability

responsible for the growth of small errors at the synoptic

(weather) scales. The existence of storm tracks over the

midlatitudes explains the minimum predictability limit in

these regions, about 5 days at 358–658S and 6–8 days at

358–508N. However, the situation is somewhat different

over the tropics. Baroclinic instability is generally negli-

gible in the tropics, where barotropic and convective in-

stabilities and their interactions are dominant. Reynolds

et al. (1994) found that the growth rate of the internal

error in the midlatitudes is much greater than that in

the tropics, and that model deficiencies are the main

error sources in the tropics. Today, the prediction skill

of state-of-the-art operational forecast models is close

to the predictability limit in the midlatitudes, but far

below the predictability limit in the tropics (Bengtsson

et al. 2005). The results of the present study suggest that

in the tropics a significant increase in prediction skill

may be obtained through model improvements, whereas

the potential for an increase in prediction skill is much

lower in the midlatitudes.

The predictability limit of the daily 500-hPa geo-

potential height field varies with the season (Fig. 13). In

the boreal spring, the predictability limit in the Southern

Hemisphere is much higher than that in the Northern

Hemisphere; the maximum predictability limit is ob-

served over the Southern Hemisphere subtropics and

the Antarctic region. Very low predictability limits in

the Southern Hemisphere are seen only in small areas,

whereas large areas in the Northern Hemisphere have

low limits. In contrast, the predictability limit in the

boreal autumn is much higher in the Northern Hemi-

sphere than in the Southern Hemisphere. Over most re-

gions in the Northern Hemisphere, the predictability limit

exceeds 9 days, and the maximum predictability limit of

about 2 weeks is located mainly in the mid- to low lati-

tudes of the Northern Hemisphere. As we know, weather

patterns in autumn are relatively stable, while weather

conditions fluctuate strongly in spring, which may explain

the higher predictability limit in the autumn hemisphere

than in the spring hemisphere.

In the boreal summer, the predictability limit over the

tropics and polar regions is relatively high, whereas it is

very low in the Northern Hemisphere subtropics and

Southern Hemisphere midlatitudes. Compared with the

boreal summer, in the boreal winter the predictability

limit is high in the Antarctic and over the tropical

Indian, North Pacific, and North Atlantic Oceans. The

FIG. 12. (left) Spatial distribution of the annual mean predictability limit (in days) of the daily

500-hPa geopotential height field and (right) its zonal mean profile. Here, TP denotes the

predictability limit.
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FIG. 13. Spatial distributions of (left) the seasonal mean predictability limit (in days) of

the daily 500-hPa geopotential height field and (right) their zonal mean profiles: (a) spring

(March–May), (b) summer (June–August), (c) autumn (September–November), and

(d) winter (December–February). Here, TP denotes the predictability limit.
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existence of good long-range predictability over these

regions during the boreal winter was reported by

Reichler and Roads (2004), who attributed this finding

to the major modes of low-frequency atmospheric vari-

ability, including the Southern Hemisphere annular

mode (SAM) or Antarctic Oscillation (AAO; Gong and

Wang 1999; Thompson and Wallace 2000; Nan and Li

2003), the Pacific–North America teleconnection (PNA;

Wallace and Gutzler 1981), and the North Atlantic Os-

cillation (NAO; Barnston and Livezey 1987; Li and Wang

2003). In addition, there are two belts of low pre-

dictability limits located over the midlatitudes of Eurasia

and North America in winter, which are largely consis-

tent with the locations of Northern Hemisphere winter

storm tracks.

Simmons and Hollingsworth (2002) showed that the

European Centre for Medium-Range Weather Fore-

casts (ECMWF) forecast errors at 500-hPa height over

the extratropical Northern Hemisphere during winter

2001 did not reach saturation until 10 days later. How-

ever, the predictability limit over most regions of the

extratropical Northern Hemisphere in winter is less than

10 days, according to our result shown in Fig. 13d. Our

result probably reflects the fact that the propagation

of large initial analogous differences in the upstream

regions has a significant influence on error growth in

downstream regions. On the other hand, atmospheric

predictability depends on spatial scales; a large spatial

scale generally corresponds to a higher degree of pre-

dictability. Therefore, the error averaged over a large

region of the extratropical Northern Hemisphere may

show slower growth than the error for small regions in

the extratropical Northern Hemisphere.

The variability of the wind field is large in the tropics,

making it suitable for assessing the predictability limit in

the tropics (Bengtsson and Hodges 2006). Figure 14

shows the spatial distribution of the predictability limit

of the daily 850-hPa vector wind field. Compared with

the daily 500-hPa geopotential height field, the daily

850-hPa vector wind field has a lower predictability limit

over most of the globe. The limit is less than 6 days

worldwide, except in the tropics, North Pacific, and North

Atlantic, where it is beyond 7 days. The predictability

limit of the daily 850-hPa vector wind field is the lowest in

the mid- to high latitudes of Eurasia, North America, and

the Southern Hemisphere, similar to the daily 500-hPa

geopotential height field.

The predictability limit of the daily 850-hPa vector

wind field also changes with the season (Fig. 15). In the

boreal spring, the weather in the Northern Hemisphere

is variable and the predictability limit is very low,

whereas weather systems in the Southern Hemisphere

are stable, resulting in a high predictability limit. The

situation in the boreal autumn is the reverse of that

in the boreal spring: except off the east coast of Asia

and in the northern part of North America, where the

predictability limit is below 5 days, the predictability

limit throughout the Northern Hemisphere is relatively

high, reaching 2 weeks in the North Pacific and North

Atlantic. During the boreal autumn, the predictability

limit shows large spatial variability in the region from

East Asia to the central and eastern Pacific, possibly

related to the East Asian trough, which is highly vari-

able, and the subtropical Pacific anticyclone, which is

stable. A similar case is found when considering the

North American trough over North America and the

Azores high over the North Atlantic Ocean. These

results may reflect the large differences in local pre-

dictability. In fact, local predictability depends on local

weather regimes, which have different intrinsic sta-

bilities that determine the spatial variability of local

predictability.

FIG. 14. As in Fig. 12, but for the daily 850-hPa vector wind field. The error of the vector wind

field is measured by the absolute error of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Du)2

1 (Dy)2
q

.
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FIG. 15. As in Fig. 13, but for the daily 850-hPa vector wind field.
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In the boreal summer, the predictability limit of the

daily 850-hPa vector wind field is very high in the western

North Pacific, northern Indian, and equatorial eastern

Pacific Oceans. Predictions of the daily 850-hPa vector

wind field in the western North Pacific are important for

forecasting the East Asian summer monsoon. In the bo-

real winter, the predictability limit of the daily 850-hPa

vector wind field is relatively high in the southern tropical

Indian, tropical Africa, North Pacific, and North Atlantic

Oceans.

We also investigated the vertical distributions of the

predictability limit of the daily zonal mean geopotential

height and wind fields (Figs. 16 and 17), and found that

the predictability limits increase with height for all

latitudes. The predictability limit is less than 3 weeks in

the troposphere, whereas it is about 1 month in the

lower stratosphere. This finding is consistent with the

observation that tropospheric weather patterns tend to

change on time scales of several days, and that circu-

lation regimes in the stratosphere tend to persist for

several weeks or longer (Baldwin and Dunkerton 2001;

Baldwin et al. 2003). In the lower stratosphere, the

predictability limit of the daily zonal mean vector wind

field in the tropics is much higher than that in the mid-

to high latitudes in both hemispheres, possibly related to

the phenomenon of the quasi-biennial oscillation (QBO;

Holton and Lindzen 1972) in the tropical stratosphere.

Baldwin et al. (2003) reported that persistent circulation

anomalies in the lowermost stratosphere could affect the

troposphere through changes to waves in the upper tro-

posphere, which induces surface pressure changes that

correspond to the Northern Hemisphere annular mode

(NAM). In this way, slow variations of the circulation

in the stratosphere may help to increase the skill of

extended-range (beyond 10 days) tropospheric weather

forecasts. If operational forecast models could ade-

quately resolve the stratosphere–troposphere coupling

in the future, the stratosphere may be a potential pre-

dictability source for forecasting the extended-range

weather in the troposphere.

FIG. 16. Vertical distributions of (left) the annual mean predictability limit (in days) of the

zonal mean daily geopotential height field and (right) the vertical profile of its meridional

mean. Here, TP denotes the predictability limit.

FIG. 17. As in Fig. 16, but for the zonal mean daily vector wind fields.
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7. Summary

We have presented a new algorithm that yields esti-

mates of the NLLE and its derivatives from experi-

mental or observational data. The algorithm allows us to

search for the local dynamical analogs from experi-

mental or observational time series. By investigating the

divergence of the distance between local dynamical

analogs, the limit of local predictability may be quanti-

tatively determined. Using the algorithm, we performed

a quantitative analysis on temporal–spatial distributions

of the predictability limits of the daily geopotential

height and wind fields.

For the daily 500-hPa geopotential height field, the

limit of weather predictability appears to have a zonal

distribution, with a maximum limit of 10–14 days over

the tropics and Antarctic, followed by 8–11 days over the

Arctic, and 6–11 days over the mid- to high latitudes of

the Northern Hemisphere; the lowest limit of 4–6 days is

in the Southern Hemisphere midlatitudes. Compared

with the daily 500-hPa geopotential height field, the

daily 850-hPa vector wind field has a relatively lower

predictability limit over most of the globe. The limit is

less than 6 days worldwide, except in the tropics, North

Pacific, and North Atlantic, where it is beyond 7 days.

The predictability limits of the daily 500-hPa geo-

potential height and 850-hPa vector wind fields vary

with season. The predictability limit in autumn is gen-

erally higher than that in spring. For most regions in the

Antarctic and the tropical Indian, North Pacific, and North

Atlantic Oceans, the mean predictability limit in winter is

much higher than that in summer. The vertical distribu-

tions of the predictability limits of the daily geopotential

height and wind fields show an increase in their pre-

dictability limits with height. The fact that the pre-

dictability limits of the two daily variables are less than

3 weeks in the troposphere and are about 1 month in

the lower stratosphere indicates that the stratosphere

may be used as a potential predictability source.
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